

WebRTC	Cookbook

Table	of	Contents

WebRTC	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Peer	Connections

Introduction

Building	a	signaling	server	in	Erlang

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Building	a	signaling	server	in	Java

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Detecting	WebRTC	functions	supported	by	a	browser

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Making	and	answering	calls

Getting	ready

How	to	do	it…

Making	a	call

Answering	a	call

How	it	works…

There’s	more…

See	also

Implementing	a	chat	using	data	channels

Getting	ready

How	to	do	it…

Creating	the	main	HTML	page	of	the	application

Creating	the	JavaScript	helper	library

How	it	works…

There’s	more…

See	also

Implementing	a	chat	using	a	signaling	server

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	and	using	STUN

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	and	using	TURN

Getting	ready

How	to	do	it…

Installing	the	TURN	server

Using	TURN	in	WebRTC	application

How	it	works…

There’s	more…

See	also

2.	Supporting	Security

Introduction

Generating	a	self-signed	certificate

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Configuring	a	TURN	server	with	authentication

Getting	ready

How	to	do	it…

Implementing	the	client-side	code

Implementing	the	server-side	code

How	it	works…

There’s	more…

See	also

Configuring	a	web	server	to	work	over	HTTPS

Getting	ready

How	to	do	it…

Configuring	Nginx

Configuring	Apache

Configuring	IIS

There’s	more…

See	also

Configuring	a	WebSockets	proxy	on	the	web	server

Getting	ready

How	to	do	it…

Configuring	Nginx

Configuring	Apache

Configuring	IIS

How	it	works…

There’s	more…

See	also

Configuring	a	firewall

Getting	ready

How	to	do	it…

Configuring	a	firewall	on	a	server

Configuring	a	firewall	on	a	client

See	also

3.	Integrating	WebRTC

Introduction

Integrating	WebRTC	with	Asterisk

Getting	ready

How	to	do	it…

Installing	libSRTP

Installing	Asterisk

How	it	works…

There’s	more…

See	also

Integrating	WebRTC	with	FreeSWITCH

Getting	ready

How	to	do	it…

Installing	FreeSWITCH

Enabling	WebRTC

Starting	FreeSWITCH

How	it	works…

There’s	more…

See	also

Making	calls	from	a	web	page

Getting	ready

How	to	do	it…

Installing	sipML5

How	it	works…

There’s	more…

See	also

Integration	of	WebRTC	with	web	cameras

Getting	ready

How	to	do	it…

Configuring	the	webcam

Installing	WebRTC	media	server

Time	for	magic

How	it	works…

There’s	more…

4.	Debugging	a	WebRTC	Application

Introduction

Working	with	a	WebRTC	statistics	API

Getting	ready

How	to	do	it…

Checking	estimated	bandwidth

Checking	packet	loss

How	it	works…

There’s	more…

See	also

Debugging	with	Chrome

Getting	ready

How	to	do	it…

Using	webrtc-internals

Using	Chrome	logging	mechanism

How	it	works…

There’s	more…

See	also

Debugging	TURN

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Debugging	using	Wireshark

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

5.	Working	with	Filters

Introduction

Working	with	colors	and	grayscale

How	to	do	it…

How	it	works…

Working	with	brightness

How	to	do	it…

How	it	works…

Working	with	contrast

How	to	do	it…

How	it	works…

Working	with	saturation

How	to	do	it…

How	it	works…

Working	with	hue

How	to	do	it…

How	it	works…

Using	the	sepia	filter

How	to	do	it…

How	it	works…

Using	the	opacity	filter

How	to	do	it…

How	it	works…

Inverting	colors

How	to	do	it…

How	it	works…

Implementing	the	blur	effect

How	to	do	it…

How	it	works…

Implementing	the	dropped	shadow	effect

How	to	do	it…

How	it	works…

Combining	filters

How	to	do	it…

How	it	works…

Custom	video	processing

How	to	do	it…

How	it	works…

6.	Native	Applications

Introduction

Building	a	customized	WebRTC	demo	for	iOS

Getting	ready

How	to	do	it…

There’s	more…

Building	a	demo	project	for	a	iOS	simulator

See	also

Compiling	and	running	an	original	demo	for	iOS

Getting	ready

How	to	do	it…

Building	a	demo	project	for	an	iOS	device

Building	a	demo	project	for	an	iOS	simulator

There’s	more…

See	also

Compiling	and	running	a	demo	for	Android

Getting	ready

Preparing	the	system

Installing	Oracle	JDK

Getting	the	WebRTC	source	code

Installing	Android	Developer	Tools

How	to	do	it…

Running	on	the	Android	simulator

Fixing	a	bug	with	GLSurfaceView

Running	on	a	physical	Android	device

There’s	more…

See	also

Building	an	OpenWebRTC	library

Getting	ready

How	to	do	it…

There’s	more…

7.	Third-party	Libraries

Introduction

Building	a	video	conference	using	SimpleWebRTC

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	an	application	using	RTCMultiConnection

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Developing	a	simple	WebRTC	chat	using	PeerJS

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Making	a	simple	video	chat	with	rtc.io

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	OpenTok	to	create	a	WebRTC	application

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	multiuser	conference	using	WebRTCO

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

8.	Advanced	Functions

Introduction

Visualizing	a	microphone’s	sound	level

Getting	ready

How	to	do	it…

How	it	works…

See	also

Muting	a	microphone

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Pausing	a	video

Getting	ready

How	to	do	it…

How	it	works…

See	also

Taking	a	screenshot

Getting	ready

How	to	do	it…

How	it	works…

See	also

Streaming	media

Getting	ready

How	to	do	it…

How	it	works…

See	also

Index

WebRTC	Cookbook

WebRTC	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1200215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-445-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Andrii	Sergiienko

Reviewers

Pasquale	Boemio

Jose	López

Marcos	de	Vera	Piquero

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Sam	Wood

Content	Development	Editor

Rahul	Nair

Technical	Editor

Siddhi	Rane

Copy	Editor

Neha	Vyas

Project	Coordinator

Judie	Jose

Proofreaders

Ting	Baker

Simran	Bhogal

Maria	Gould

Paul	Hindle

Indexer

Hemangini	Bari

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Andrii	Sergiienko	is	a	computer	software	developer	from	Ukraine	and	is	passionate	about
information	technologies.	From	his	early	childhood,	he	was	interested	in	computer
programming	and	hardware.	He	took	his	first	step	into	these	fields	more	than	20	years	ago.
He	has	experience	of	a	wide	set	of	languages	and	technologies	including	C,	C++,	Java,
assembly	language,	Erlang,	JavaScript,	PHP,	Riak,	shell	scripting,	computer	networks,	and
security.

During	his	career	he	worked	for	both	small,	local	companies	such	as	domestic	ISP	and
large,	worldwide	corporations	such	as	Hewlett	Packard.	He	also	started	his	own	projects—
some	of	them	were	relatively	successful.

Today,	he	is	the	owner	and	inspirer	of	OSLIKAS	OÜ,	a	computer	software	company	with
headquarters	in	Estonia.	The	company	(http://www.oslikas.com)	focuses	on	modern	IT
technologies	and	solutions.

Working	on	this	book	was	a	really	great	and	interesting	experience	for	me.	All	this	would
be	impossible	without	the	help	of	certain	people.	And	now	is	the	time	for	me	to	say	thank
you	to	them.

First	of	all,	I	would	like	to	thank	my	parents	Olga	and	Alexander	for	my	happy	childhood
that	established	the	foundation	for	my	life	and	career.

I	would	like	to	say	thank	you	to	my	wife	Inna	for	her	patience,	encouragement,	and
support	during	this	process.

I	would	like	to	thank	the	Packt	Publishing	team	as	well.	These	guys	are	doing	really	great
work	and	making	the	world	a	better	place.	We	contacted	some	of	them	directly	during	the
work,	and	others	stayed	behind	the	scenes.	However,	I	know	that	a	lot	of	people	spent	part
of	their	lives	to	make	this	book	possible.	Thank	you	all.

http://www.oslikas.com

About	the	Reviewers
Pasquale	Boemio	fell	in	love	with	Linux	and	the	open	source	philosophy	at	the	age	of	12.
Following	this	passion,	he	studied	computer	engineering	at	University	of	Naples	Federico
II	from	where	he	graduated	with	a	master’s	degree.

Currently,	he	is	working	as	a	researcher	in	the	Department	of	Electrical	Engineering	and
Information	Technology	(DIETI)	in	the	University	of	Naples	Federico	II,	contributing	to
the	development	of	real-time	communication	technologies.	His	efforts	in	this	field	are
concretized	by	supporting	the	Meetecho	project	(www.meetecho.com).

Meetecho	is	a	university	spin-off	and	a	tool	for	the	collaborative	work	currently	used	by
the	Internet	Engineering	Task	Force	(IETF)	to	provide	remote	participation	to	the	working
groups.	Meetecho	leverages	some	state-of-the-art	technologies	(such	as	WebRTC	and
Docker)	to	implement	a	comprehensive	architecture	that	can	be	lightweight	and	portable.
Meetecho’s	best	project	is	the	Janus	WebRTC	Gateway	(http://janus.conf.meetecho.com/),
mentioned	later	in	this	book,	which	allows	a	user	the	ability	to	integrate	different,	real-
time	technologies	without	any	pains.

In	his	spare	time,	Pasquale	works	on	some	personal	open	source	projects
(https://github.com/helloIAmPau)	and	helps	the	community	by	giving	his	contributions	to
cool	projects	found	on	the	GitHub	platform.

He	has	already	worked	with	Packt	Publishing	by	reviewing	WebRTC	Integrator’s	Guide,	a
useful	guide	for	anyone	who	needs	to	integrate	WebRTC	with	a	retro	technology	such	as
SIP.

Jose	López	was	born	in	Galicia,	Spain.	He	is	a	telecommunications	engineer	with	a	large
amount	of	experience	in	software	development,	and	is	also	focused	on	real-time
audio/video	communications.	He	started	working	for	Quobis	Networks	in	2013,	a	leading
company	in	WebRTC	solutions.

Marcos	de	Vera	Piquero	is	a	software	engineer	who	has	mainly	worked	with	Python	and
CoffeeScript.	His	area	of	development	is	now	focused	on	the	server	side	of	real-time
multimedia	applications	at	Quobis,	his	current	employer.	He’s	also	a	free	software
enthusiast	and	is	trying	to	make	it	a	real	alternative.

http://www.meetecho.com
http://janus.conf.meetecho.com/
https://github.com/helloIAmPau

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
WebRTC	is	a	relatively	new	and	revolutionary	technology	that	opens	new	horizons	in	the
area	of	interactive	applications	and	services.	Most	of	the	popular	web	browsers	support	it
natively	(such	as	Chrome	and	Firefox)	or	via	extensions	(such	as	Safari).	Mobile
platforms	such	as	Android	and	iOS	allow	you	to	develop	native	WebRTC	applications.

This	book	covers	a	wide	set	of	topics	on	how	to	develop	software	using	a	WebRTC	stack.
Using	practical	recipes,	it	considers	basic	concepts,	security,	debugging,	integration	with
other	technologies,	and	other	important	themes	of	the	development	process	in	a	friendly
manner.

You	will	not	only	learn	about	WebRTC-specific	features,	but	also	attendant	technologies
(CSS3,	HTML5,	and	WebSockets),	and	how	to	use	them	along	with	WebRTC.

What	this	book	covers
Chapter	1,	Peer	Connections,	introduces	you	to	the	very	basic	concepts	of	WebRTC.	This
includes	practical	recipes	on	peer	connections.	You	will	also	find	simple	demo
applications	in	this	chapter.

Chapter	2,	Supporting	Security,	leads	you	through	various	security-related	topics	and
covers	how	to	secure	a	typical	WebRTC	application’s	infrastructure	components:
SSL/TLS	certificates,	WebSockets,	web	servers,	STUN/TURN,	data	channels,	and	more.

Chapter	3,	Integrating	WebRTC,	considers	integrating	a	WebRTC	application	with	other
technologies	and	third-party	software.	This	chapter	describes	practical	cases	and	solutions
on	integration.

Chapter	4,	Debugging	a	WebRTC	Application,	is	dedicated	to	application	debugging—an
important	topic	of	the	software	development	process.	In	this	chapter,	you	will	learn	about
the	topics	relating	to	debugging	in	the	scope	of	WebRTC.

Chapter	5,	Working	with	Filters,	teaches	you	how	to	use	CSS3	filters	with	WebRTC
applications.	This	chapter	also	covers	custom	image	processing.

Chapter	6,	Native	Applications,	contains	practical,	step-by-step	recipes	dedicated	to
developing	native	WebRTC	applications	on	mobile	platforms.

Chapter	7,	Third-party	Libraries,	describes	general	use	cases	and	practical	solutions	based
on	third-party	WebRTC	frameworks	and	services.

Chapter	8,	Advanced	Functions,	covers	how	to	use	advanced	WebRTC	features.	It
contains	practical	recipes	on	file	transferring,	streaming,	audio/video	controlling,	and
more.

What	you	need	for	this	book
To	use	the	recipes	and	codes	provided	and	considered	in	this	book,	you	will	need	a	few
pieces	of	software	installed:

Java	SE	7:	Note	that	for	Android-related	recipes	from	Chapter	6,	Native	Applications,
you	need	Java	SE	6	as	well—the	installation	and	configuration	process	is	described
in	detail	in	this	chapter.
Erlang	OTP	17:	If	you’re	familiar	with	this	programming	language,	you	can	use	this.
If	not,	you	can	skip	it—all	Erlang	examples	are	also	provided	in	Java.
Mac	OS	X	and	Xcode:	Use	this	for	recipes	dedicated	to	developing	WebRTC
applications	on	iOS.
Android	and	iOS:	Use	this	for	Chapter	6,	Native	Applications,	which	covers	how	to
develop	WebRTC	applications	for	mobile	platforms.
Linux:	Ubuntu	is	recommended.
Chrome	and	Firefox:	These	are	still	the	most	WebRTC-friendly	web	browsers.

Specific	requirements	and	configurations	along	with	suggested	solutions	are	considered	in
particular	chapters.

Who	this	book	is	for
This	book	is	written	as	a	set	of	ready-to-use,	practical	recipes	that	cover	a	variety	of	topics
related	to	developing	WebRTC	applications	and	services.	It	is	assumed	that	you	are
familiar,	in	general,	with	WebRTC	and	its	basic	concepts.

Most	of	the	provided	recipes	are	written	in	JavaScript.	However,	server-side	parts	of
applications	are	implemented	in	Erlang	and	Java.	So,	you	are	assumed	to	have	at	least
basic	experience	with	one	of	these	technologies.

Working	on	some	cases	described	in	this	book,	you	will	have	to	deal	with	a	Linux-based
OS.	All	recipes	are	provided	as	a	step-by-step	guide.	Although,	if	you	have	experience	of
working	with	and	configuring	Linux-based	boxes,	it	would	be	useful.

So,	this	book	is	for	someone	who	is	familiar,	in	general,	with	the	WebRTC	stack,	and	who
has	at	least	basic	skills	in	software	development.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	our	custom	JavaScript	library	located	in	the	mylib.js	file.”

A	block	of	code	is	set	as	follows:

-module(sigserver_app).

-behaviour(application).

-export([start/2,	stop/1,	start/0]).

start()	->

				ok	=	application:start(ranch),

				ok	=	application:start(crypto),

				ok	=	application:start(cowlib),

				ok	=	application:start(cowboy),

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

private	static	Map<Integer,Set<WebSocket>>	Rooms	=	new	HashMap<>();

				private	int	myroom;

				public	Main()	{

								super(new	InetSocketAddress(30001));

				}

Any	command-line	input	or	output	is	written	as	follows:

rebar	create-app	appid=sigserver

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“When	the	customer	enters
a	message	and	clicks	on	the	Submit	query	button,	we	will	wrap	the	message	into	a	JSON
object	and	send	it	via	the	data	channel.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/4450OS_ColoredImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/4450OS_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Peer	Connections
In	this	chapter,	we	will	cover	the	following	topics:

Building	a	signaling	server	in	Erlang
Building	a	signaling	server	in	Java
Detecting	WebRTC	functions	supported	by	a	browser
Making	and	answering	calls
Implementing	a	chat	using	data	channels
Implementing	a	chat	using	a	signaling	server
Configuring	and	using	STUN
Configuring	and	using	TURN

Introduction
This	chapter	covers	the	basic	concepts	of	how	to	use	WebRTC	when	developing	rich
media	web	applications	and	services.

With	simple	and	short	recipes,	you	will	learn	how	to	create	your	own	signaling	server.	The
key	data	that	needs	to	be	exchanged	by	peers	before	they	establish	a	direct	connection	is
called	the	session	description—it	specifies	the	peers’	configuration.	Signaling	server	is	a
component	in	an	application’s	infrastructure	that	is	accessible	by	all	peers	and	serves	to
exchange	multimedia’s	session	description.	The	way	peers	should	exchange	data	is	not
described	by	WebRTC	standards,	so	you	should	make	the	decision	on	your	own	regarding
the	protocol	and	mechanism	you	will	use	for	this	task.

You	can	build	a	signaling	server	using	any	programming	language	and	technology	you
like.	In	general,	the	signaling	protocol	can	be	non-technical	and	is	possible	to	implement
in	away	where	the	peers	would	use	just	a	sheet	of	paper	to	exchange	necessary	data
between	each	other.	In	this	chapter,	we	use	WebSocket	to	implement	signaling,	although
you	can	use	any	other	protocol.

The	signaling	stage	is	represented	in	the	schema	that	is	shown	in	the	following	diagram:

In	this	chapter,	you	will	find	two	recipes	that	are	dedicated	to	signaling	server
development:	Building	a	signaling	server	in	Erlang	and	Building	a	signaling	server	in
Java.	Java	is	probably	the	most	popular	and	known	technology,	and	it	would	be	easy	to
get	into	this	topic	using	Java,	even	if	you	don’t	have	programming	experience	with	this
technology.	Erlang	is	not	widely	known	yet.	Nonetheless,	this	is	a	very	mature	technology,
very	suitable	for	writing	lightweight	and	extremely	fast	server	applications	with	perfect

scalability.	So,	by	learning	signaling	server,	you	will	find	simple	solutions	in	Erlang	as
well.

This	chapter	also	covers	the	basic	use	case	of	how	to	use	WebRTC	data	channels:	file
transferring	and	peer-to-peer	chat.

You	will	also	learn	how	to	configure	and	use	Session	Traversal	Utilities	for	NAT
(STUN)	and	Traversal	Using	Relays	around	NAT	(TURN)	services,	and	of	course,	this
chapter	covers	making	peer-to-peer	calls	using	WebRTC.

Note	that	in	this	chapter,	we	will	cover	the	process	of	making	computer-to-computer	calls.
If	you	want	to	know	more	about	how	to	use	WebRTC	with	VoIP	and	SIP,	and	how	to	make
phone	calls	from	a	web	page,	refer	to	the	Chapter	3,	Integrating	WebRTC.

Building	a	signaling	server	in	Erlang
The	following	recipe	shows	how	to	build	signaling	server	using	Erlang	programming
language	and	WebSockets	for	transport	protocol.	We	will	not	introduce	Erlang
programming	in	this	recipe,	so	you	should	have	at	least	basic	knowledge	of	this
programming	language	and	its	relevant	technologies.

Getting	ready
To	use	this	solution,	you	should	have	Erlang	installed	on	your	system	to	start	with.	You
can	download	the	Erlang	distribution	relevant	to	your	system	from	its	home	page
http://www.erlang.org/download.html.	The	installation	process	might	need	specific	actions
relevant	to	specific	platforms/OSes,	so	follow	the	official	installation	instructions	at
http://www.erlang.org/doc/installation_guide/INSTALL.html.

Tip
For	this	example,	I’ve	used	Erlang	17.	You	might	need	to	add	some	minor	changes	to	the
code	to	make	it	work	under	future	versions	of	Erlang.

We	will	also	use	the	Git	versioning	system	to	download	additional	packets	and
components	necessary	for	our	solution,	so	you	should	download	and	install	Git
distribution	relevant	to	your	system.	You	can	download	this	from	http://www.git-scm.com.
As	a	build	tool	for	the	project,	we	will	use	Rebar;	you	should	also	download	and	install	it
from	https://github.com/basho/rebar.

http://www.erlang.org/download.html
http://www.erlang.org/doc/installation_guide/INSTALL.html
http://www.git-scm.com
https://github.com/basho/rebar

How	to	do	it…
The	following	steps	will	lead	you	through	the	process	of	building	a	signaling	server	using
Erlang:

1.	 Create	a	new	folder	for	the	signaling	server	application	and	navigate	to	it.
2.	 Using	the	Rebar	tool,	create	a	basic	Erlang	application:

rebar	create-app	appid=sigserver

This	command	will	create	an	src	folder	and	relevant	application	files	in	it.

3.	 Create	the	rebar.config	file,	and	put	the	following	Rebar	configuration	in	it:

{erl_opts,	[warnings_as_errors]}.

{deps,

[

{'gproc',	".*",	{

git,	"git://github.com/esl/gproc.git",	{tag,	"0.2.16"}

}},

{'jsonerl',	".*",	{

git,	"git://github.com/fycth/jsonerl.git",	"master"

}},

{'cowboy',	".*",	{

git,"https://github.com/extend/cowboy.git","0.9.0"

}}

]}.

4.	 Open	the	src/sigserver.app.src	file	and	add	the	following	components	to	the
application’s	section	list:	cowlib,	cowboy,	compiler,	and	gproc.

5.	 Open	the	src/sigserver_app.erl	file	and	add	the	following	code:

-module(sigserver_app).

-behaviour(application).

-export([start/2,	stop/1,	start/0]).

start()	->

				ok	=	application:start(ranch),

				ok	=	application:start(crypto),

				ok	=	application:start(cowlib),

				ok	=	application:start(cowboy),

				ok	=	application:start(gproc),

				ok	=	application:start(compiler),

				ok	=	application:start(sigserver).

start(_StartType,	_StartArgs)	->

				Dispatch	=	cowboy_router:compile([

														{'_',[

																	{"/	",	handler_websocket,[]}

]}

]),

				{ok,	_}	=	cowboy:start_http(websocket,	100,	[{ip,	{127,0,0,1}},

{port,	30001}],	[

												{env,	[{dispatch,	Dispatch}]},

												{max_keepalive,	50},

												{timeout,	500}]),

				sigserver_sup:start_link().

stop(_State)	->	ok.

6.	 Create	the	src/handler_websocket.erl	file	and	put	the	following	code	in	it:

-module(handler_websocket).

-behaviour(cowboy_websocket_handler).

-export([init/3]).

-export([websocket_init/3,	websocket_handle/3,

									websocket_info/3,	websocket_terminate/3]).

-record(state,	{

									client	=	undefined	::	undefined	|	binary(),

									state	=	undefined	::	undefined	|	connected	|	running,

									room	=	undefined	::	undefined	|	integer()

}).

init(_Any,	_Req,	_Opt)	->

				{upgrade,	protocol,	cowboy_websocket}.

websocket_init(_TransportName,	Req,	_Opt)	->

				{Client,	Req1}	=	cowboy_req:header(<<"x-forwarded-for">>,	Req),

				State	=	#state{client	=	Client,	state	=	connected},

				{ok,	Req1,	State,	hibernate}.

websocket_handle({text,Data},	Req,	State)	->

				StateNew	=	case	(State#state.state)	of

																			started	->

																							State#state{state	=	running};

																			_	->

																							State

															end,

				JSON	=	jsonerl:decode(Data),

				{M,Type}	=	element(1,JSON),

				case	M	of

								<<"type">>	->

												case	Type	of

																<<"GETROOM">>	->

																				Room	=	generate_room(),

																				R	=	iolist_to_binary(jsonerl:encode({{type,	

<<"GETROOM">>},	{value,	Room}})),

																				gproc:reg({p,l,	Room}),

																				S	=	(StateNew#state{room	=	Room}),

																				{reply,	{text,	<<R/binary>>},	Req,	S,	hibernate};

																<<"ENTERROOM">>	->

																				{<<"value">>,Room}	=	element(2,JSON),

																				Participants	=	gproc:lookup_pids({p,l,Room}),

																				case	length(Participants)	of

																								1	->

																												gproc:reg({p,l,	Room}),

																												S	=	(StateNew#state{room	=	Room}),

																												{ok,	Req,	S,	hibernate};

																								_	->

																												R	=	iolist_to_binary(jsonerl:encode({{type,	

<<"WRONGROOM">>}})),

																												{reply,	{text,	<<R/binary>>},	Req,	

StateNew,	hibernate}

																				end;

																_	->

																				reply2peer(Data,	StateNew#state.room),

																				{ok,	Req,	StateNew,	hibernate}

												end;

								_	->

												reply2peer(Data,	State#state.room),

												{ok,	Req,	StateNew,	hibernate}

				end;

websocket_handle(_Any,	Req,	State)	->	{ok,	Req,	State,	hibernate}.

websocket_info(_Info,	Req,	State)	->	{reply,	{text,_Info},	Req,	State,	

hibernate}.

websocket_terminate(_Reason,	_Req,	_State)	->	ok.

reply2peer(R,	Room)	->

				[P	!	<<R/binary>>	||	P	<-	gproc:lookup_pids({p,l,Room})—[self()]].

generate_room()	->

				random:seed(now()),

				random:uniform(999999).

7.	 Now	we	can	compile	the	solution	using	the	Rebar	tool:

rebar	get-deps

rebar	compile

If	everything	was	successful,	you	should	not	see	any	errors	(warnings	are	not
critical).

8.	 After	we	build	our	signaling	server,	we	can	start	it	using	the	following	command:

erl	-pa	deps/*/ebin	ebin	-sasl	errlog_type	error	-s	sigserver_app

Tip
Windows-based	systems	can’t	use	a	star	symbol	in	such	constructions,	so	if	you’re
working	under	Windows,	you	should	use	the	full	path	name	as	shown	in	the
following	command:

erl	-pa	deps/cowboy/ebin	deps/cowlib/ebin	deps/gproc/ebin	

deps/jsonerl/ebin	deps/ranch/ebin	ebin	-sasl	errlog_type	error	-s	

sigserver_app

Now	your	signaling	server	should	be	running,	and	you	need	to	listen	for	incoming
WebSocket	connections	on	port	30001.

Note	that	full	source	codes	are	supplied	with	this	book.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

How	it	works…
In	this	recipe,	we	implemented	the	WebRTC	signaling	server	in	Erlang.	The	application
listens	on	port	30001	for	incoming	WebSocket	connections	from	the	browser	clients.

The	first	peer	will	be	registered	by	the	server	in	a	virtual	room	and	will	get	the	room
number.	The	second	peer	after	that	can	use	the	room	number	in	order	to	connect	to	the
first	peer.	The	signaling	server	will	check	whether	the	virtual	room	exists	and	if	so,	it	will
route	call/answer	requests	and	answers	between	the	peers	in	order	to	make	them	establish
a	direct	peer-to-peer	WebRTC	connection.

There’s	more…
Basically,	this	is	a	very	simple	signaling	server.	It	doesn’t	have	any	advanced	features,	and
the	main	goal	of	it	is	to	help	peers	establish	direct	connection	between	each	other.
Nevertheless,	a	signaling	server	can	serve	additional	tasks.	For	example,	it	can	serve	for
web	chats,	file	transfers,	service	data	exchanges,	and	other	features	specific	for	certain
situations.	There	are	no	certain	requirements	for	a	signaling	server;	you	can	implement	it
using	your	favorite	programming	language	and	technology.

See	also
For	tips	on	implementing	a	signaling	server	in	Java,	refer	to	the	Building	a	signaling
server	in	Java	recipe
You	can	also	refer	to	the	Making	and	answering	calls	recipe	on	how	to	use	a
signaling	server	from	a	browser	application	using	JavaScript

Building	a	signaling	server	in	Java
In	this	recipe,	we	will	cover	the	implementation	of	a	signaling	server	in	Java.

Getting	ready
This	recipe	uses	Java,	so	you	should	have	Java	Developer	Kit	(JDK)	installed	on	your
machine.	You	can	download	the	appropriate	version	of	JDK	for	your	platform	from	its
web	page	at	http://www.java.com.

Java	7	has	its	own	API	to	implement	a	WebSocket	application.	Previous	versions	of	Java
don’t	have	the	native	support	of	WebSockets.	In	this	recipe,	we	will	cover	the	universal
solution	that	works	in	different	Java	versions	and	is	based	on	the	third-party	component,
which	you	can	find	on	its	home	page	at	http://java-websocket.org.	This	project	is	also
present	on	GitHub	at	https://github.com/TooTallNate/Java-WebSocket.

You	need	to	download	and	install	the	Java-WebSocket	library;	it	should	then	be	linked	to
your	project.

In	this	recipe,	we	pack	signaling	messages	into	the	JSON	format	before	sending,	so	we
need	a	Java	library	to	work	with	JSON	structures.	For	this	purpose,	we	will	use	Java
classes	from	JSON’s	home	page,	http://www.json.org/java/.

Download	these	classes	and	link	them	to	your	project,	or	you	can	just	put	these	classes
into	your	project’s	folder	structure	and	compile	it	all	together.

It	is	assumed	that	you	have	experience	of	programming	in	Java,	so	we	will	not	cover	the
basic	questions	like	how	to	start	a	Java	application	and	so	on.

http://www.java.com
http://java-websocket.org
https://github.com/TooTallNate/Java-WebSocket
http://www.json.org/java/

How	to	do	it…
Create	a	new	project	in	your	Java	IDE	and	link	the	JSON	libraries	along	with	the	Java-
WebSocket	library.

The	following	code	represents	a	simple	signaling	server.	Compile	it	and	start	a	Java
console	application	as	usual:

package	com.webrtcexample.signaler;

import	org.java_websocket.WebSocket;

import	org.java_websocket.handshake.ClientHandshake;

import	org.java_websocket.server.WebSocketServer;

import	org.json.JSONException;

import	org.json.JSONObject;

import	java.net.InetSocketAddress;

import	java.util.*;

public	class	Main	extends	WebSocketServer	{

				private	static	Map<Integer,Set<WebSocket>>	Rooms	=	new	HashMap<>();

				private	int	myroom;

				public	Main()	{

								super(new	InetSocketAddress(30001));

				}

				@Override

				public	void	onOpen(WebSocket	conn,	ClientHandshake	handshake)	{

								System.out.println("New	client	connected:	"	+	

conn.getRemoteSocketAddress()	+	"	hash	"	+	

conn.getRemoteSocketAddress().hashCode());

				}

				@Override

				public	void	onMessage(WebSocket	conn,	String	message)	{

								Set<WebSocket>	s;

								try	{

												JSONObject	obj	=	new	JSONObject(message);

												String	msgtype	=	obj.getString("type");

												switch	(msgtype)	{

																case	"GETROOM":

																				myroom	=	generateRoomNumber();

																				s	=	new	HashSet<>();

																				s.add(conn);

																				Rooms.put(myroom,	s);

																				System.out.println("Generated	new	room:	"	+	myroom);

																				conn.send("{\"type\":\"GETROOM\",\"value\":"	+	myroom	+	

"}");

																				break;

																case	"ENTERROOM":

																				myroom	=	obj.getInt("value");

																				System.out.println("New	client	entered	room	"	+	

myroom);

																				s	=	Rooms.get(myroom);

																				s.add(conn);

																				Rooms.put(myroom,	s);

																				break;

																default:

																				sendToAll(conn,	message);

																				break;

												}

								}	catch	(JSONException	e)	{

												sendToAll(conn,	message);

								}

								System.out.println();

				}

				@Override

				public	void	onClose(WebSocket	conn,	int	code,	String	reason,	boolean	

remote)	{

								System.out.println("Client	disconnected:	"	+	reason);

				}

				@Override

				public	void	onError(WebSocket	conn,	Exception	exc)	{

								System.out.println("Error	happened:	"	+	exc);

				}

				private	int	generateRoomNumber()	{

								return	new	Random(System.currentTimeMillis()).nextInt();

				}

				private	void	sendToAll(WebSocket	conn,	String	message)	{

								Iterator	it	=	Rooms.get(myroom).iterator();

								while	(it.hasNext())	{

												WebSocket	c	=	(WebSocket)it.next();

												if	(c	!=	conn)	c.send(message);

								}

				}

				public	static	void	main(String[]	args)	{

								Main	server	=	new	Main();

								server.start();

				}

}

Once	the	application	starts,	it	will	listen	on	the	TCP	port	30001	for	WebSocket	messages
from	clients.	You	can	write	simple	client	applications	to	test	the	signaling	server—refer	to
the	Making	and	answering	calls	recipe.

Note	that	you	can	find	a	Maven-based	project	for	this	example	supplied	with	this	book.

How	it	works…
First	of	all,	the	client	sends	a	GETROOM	message	to	the	signaling	server	that	is	listening	on
TCP	port	30001.	The	server	generates	a	new	virtual	room	number,	stores	it,	and	sends	it
back	to	the	client.

The	client	constructs	a	new	access	URL	using	the	virtual	room	number	received	from	the
server.	Then,	the	second	client	uses	this	URL	to	enter	the	virtual	room	and	establish	a	call
to	the	first	client.

The	second	client	sends	the	room	number	it	got	from	the	URL	to	the	signaling	server.	The
server	associates	the	client	with	the	virtual	room	number.	Then,	the	client	makes	a	call,
using	signaling	server,	which	forwards	its	messages	to	the	first	client	that	is	present	in	the
room	already.	The	first	client	answers	the	call,	also	using	the	signaling	server	as	the
middle	point.

So	both	clients	exchange	the	necessary	data	(including	network	details)	and	then	establish
direct	peer-to-peer	connection.	After	the	connection	is	established,	peers	don’t	use	the
server	anymore.

There’s	more…
The	WebSocket	signaling	server	in	Java	can	be	implemented	using	a	Java	EE	stack.	For
more	details,	take	a	look	at	the	home	page	of	JSR	356	at
http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html.

You	can	also	find	an	example	at	https://github.com/hsilomedus/web-sockets-
samples/tree/master/eesockets.

Another	solution	is	to	use	Spring	4.	It	has	WebSocket	support	out	of	the	box.	For	details
on	this	solution,	take	a	look	at	the	example	on	GitHub	at
https://github.com/hsilomedus/web-sockets-samples/tree/master/springsockets.

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
https://github.com/hsilomedus/web-sockets-samples/tree/master/eesockets
https://github.com/hsilomedus/web-sockets-samples/tree/master/springsockets

See	also
For	an	alternative	solution,	you	can	refer	to	the	Building	a	signaling	server	in	Erlang
recipe

Detecting	WebRTC	functions	supported
by	a	browser
WebRTC	is	not	fully	supported	by	all	available	web	browsers	at	this	time.	Moreover,	there
is	a	chance	that	your	application	will	be	running	under	some	kind	of	exotic	environment	or
web	browser	that	does	not	support	WebRTC.	So	you	need	to	have	some	mechanism	that
would	enable	you	to	detect	whether	the	environment	in	which	your	web	application	is
running	supports	the	necessary	WebRTC	features	the	application	is	going	to	use.	In	this
recipe,	we	will	cover	the	basic	method	of	doing	that.

Getting	ready
This	task	is	relevant	for	the	client	side	only,	so	all	the	code	will	be	written	in	JavaScript.
Thus,	no	specific	preparation	is	needed.

How	to	do	it…
You	can	write	a	JavaScript	library	that	can	be	used	to	detect	which	WebRTC	methods	are
available	under	the	environment	and	by	what	names	they	are	known	for	your	application.

The	following	code	represents	a	basic	but	productive	example	of	such	a	kind	of	library:

var	webrtcDetectedVersion	=	null;

var	webrtcDetectedBrowser	=	null;

window.requestFileSystem		=	window.requestFileSystem	||	

window.webkitRequestFileSystem;

function	initWebRTCAdapter()	{

				if	(navigator.mozGetUserMedia)	{

								webrtcDetectedBrowser	=	"firefox";

								webrtcDetectedVersion	=	

parseInt(navigator.userAgent.match(/Firefox\/([0-9]+)\./)[1],	10);

								RTCPeerConnection	=	mozRTCPeerConnection;

								RTCSessionDescription	=	mozRTCSessionDescription;

								RTCIceCandidate	=	mozRTCIceCandidate;

								getUserMedia	=	navigator.mozGetUserMedia.bind(navigator);

								attachMediaStream	=

												function(element,	stream)	{

																element.mozSrcObject	=	stream;

																element.play();

												};

								reattachMediaStream	=

												function(to,	from)	{

																to.mozSrcObject	=	from.mozSrcObject;

																to.play();

												};

								MediaStream.prototype.getVideoTracks	=

												function()	{

																return	[];

												};

								MediaStream.prototype.getAudioTracks	=

												function()	{

																return	[];

												};

								return	true;

				}	else	if	(navigator.webkitGetUserMedia)	{

								webrtcDetectedBrowser	=	"chrome";

								webrtcDetectedVersion	=	

parseInt(navigator.userAgent.match(/Chrom(e|ium)\/([0-9]+)\./)[2],	10);

								RTCPeerConnection	=	webkitRTCPeerConnection;

								getUserMedia	=	navigator.webkitGetUserMedia.bind(navigator);

								attachMediaStream	=

												function(element,	stream)	{

																element.src	=	webkitURL.createObjectURL(stream);

												};

								reattachMediaStream	=

												function(to,	from)	{

																to.src	=	from.src;

												};

								if	(!webkitMediaStream.prototype.getVideoTracks)	{

												webkitMediaStream.prototype.getVideoTracks	=

																function()	{

																				return	this.videoTracks;

																};

												webkitMediaStream.prototype.getAudioTracks	=

																function()	{

																				return	this.audioTracks;

																};

								}

								if	(!webkitRTCPeerConnection.prototype.getLocalStreams)	{

												webkitRTCPeerConnection.prototype.getLocalStreams	=

																function()	{

																				return	this.localStreams;

																};

												webkitRTCPeerConnection.prototype.getRemoteStreams	=

																function()	{

																				return	this.remoteStreams;

																};

								}

								return	true;

				}	else	return	false;

};

How	it	works…
This	solution	tests	which	WebRTC	API	methods	are	available	in	the	environment	and	how
they	are	named.	So	your	application	can	use	certain	API	function	names	that	will	be
relevant	for	any	web	browser,	without	using	browser-specific	function	names.

There’s	more…
There	is	another	way	to	solve	this	task.	You	don’t	necessary	have	to	write	your	own
adapter.	You	can	take	the	adapter	prepared	by	Google.	It	can	be	found	at
http://apprtc.webrtc.org/js/adapter.js.	You	just	need	to	include	it	in	your	JavaScript	code.

You	can	also	consider	using	a	browser’s	plugin	that	enables	the	use	of	WebRTC	in	Safari
and	Internet	Explorer.	You	can	get	these	at
https://temasys.atlassian.net/wiki/display/TWPP/How+to+integrate+the+plugin+with+your+website

http://apprtc.webrtc.org/js/adapter.js
https://temasys.atlassian.net/wiki/display/TWPP/How+to+integrate+the+plugin+with+your+website

See	also
You	can	find	more	information	on	the	adapter	at	the	web	page	http://www.webrtc.org/web-
apis/interop.

http://www.webrtc.org/web-apis/interop

Making	and	answering	calls
The	very	basic	action	of	any	WebRTC	application	is	making	and	receiving	a	call.	This
recipe	shows	how	to	make	calls	to	a	remote	peer.

Getting	ready
At	the	beginning,	peers	don’t	know	each	other,	and	they	don’t	know	the	necessary	network
information	to	make	direct	connection	possible.	Before	establishing	a	direct	connection,
peers	should	exchange	necessary	data	using	some	middle	point—usually,	a	signaling
server.	This	is	a	middle	point	that	is	known	to	each	peer.	So	each	peer	can	connect	to	the
signaling	server,	and	then	one	peer	can	call	another	one—by	asking	the	signaling	server	to
exchange	specific	data	with	another	peer	and	make	peers	know	each	other.

So,	you	need	a	signaling	server	to	run.

How	to	do	it…
Before	two	peers	can	establish	a	direct	connection,	they	should	exchange	specific	data
(ICE	candidates	and	session	descriptions)	using	a	middle	point—the	signaling	server.
After	that,	one	peer	can	call	another	one,	and	the	direct	peer-to-peer	connection	can	be
established.

Interactive	Connectivity	Establishment	(ICE)	is	a	technique	used	in	Network	Address
Translator	(NAT),	which	bypasses	the	process	of	establishing	peer-to-peer	direct
communication.	Usually,	ICE	candidates	provide	information	about	the	IP	address	and
port	of	the	peer.	Typically,	an	ICE	candidate	message	might	look	like	the	following:
a=candidate:1	1	UDP	4257021352	192.168.0.10	1211	typ	host

Session	Description	Protocol	(SDP)	is	used	by	peers	in	WebRTC	to	configure
exchanging	(network	configuration,	audio/video	codecs	available,	and	so	on).	Every	peer
sends	details	regarding	its	configuration	to	another	peer	and	gets	the	same	details	from	it
back.	The	following	print	depicts	a	part	of	an	SDP	packet	representing	the	audio
configuration	options	of	a	peer:
m=audio	53275	RTP/SAVPF	121	918	100	1	2	102	90	131	16

c=IN	IP4	16.0.0.1

a=rtcp:53275	IN	IP4	16.0.0.1

In	the	schema	represented	in	the	following	diagram,	you	can	see	the	generic	flow	of	a	call
establishing	process:

Note	that	TURN	is	not	showed	in	the	schema.	If	you	used	TURN,	it	would	be	depicted

just	after	the	STUN	stage	(before	the	first	and	second	stage).

Making	a	call
To	make	a	call,	we	need	to	take	some	steps	to	prepare	(such	as	getting	access	to	the
browser’s	media):

1.	 Get	access	to	the	user’s	media:

function	doGetUserMedia()	{

				var	constraints	=	{"audio":	true,	"video":	{"mandatory":	{},	

"optional":	[]}};

								try	{

												getUserMedia(constraints,	onUserMediaSuccess,

																function(e)	{

																				console.log("getUserMedia	error	"+	e.toString());

																});

								}	catch	(e)	{

												console.log(e.toString());

								}

				};

2.	 If	you	succeed,	create	a	peer	connection	object	and	make	a	call:

function	onUserMediaSuccess(stream)	{

								attachMediaStream(localVideo,	stream);

								localStream	=	stream;

								createPeerConnection();

								pc.addStream(localStream);

								if	(initiator)	doCall();

};

function	createPeerConnection()	{

								var	pc_constraints	=	{"optional":	[{"DtlsSrtpKeyAgreement":	

true}]};

								try	{

												pc	=	new	RTCPeerConnection(pc_config,	pc_constraints);

												pc.onicecandidate	=	onIceCandidate;

								}	catch	(e)	{

												console.log(e.toString());

												pc	=	null;

												return;

								}

								pc.onaddstream	=	onRemoteStreamAdded;

};

function	onIceCandidate(event)	{

								if	(event.candidate)

												sendMessage({type:	'candidate',	label:	

event.candidate.sdpMLineIndex,	id:	event.candidate.sdpMid,candidate:	

event.candidate.candidate});

};

function	onRemoteStreamAdded(event)	{

								attachMediaStream(remoteVideo,	event.stream);

								remoteStream	=	event.stream;

};

function	doCall()	{

								var	constraints	=	{"optional":	[],	"mandatory":	

{"MozDontOfferDataChannel":	true}};

								if	(webrtcDetectedBrowser	===	"chrome")

												for	(var	prop	in	constraints.mandatory)	if	

(prop.indexOf("Moz")	!=	-1)	delete	constraints.mandatory[prop];

								constraints	=	mergeConstraints(constraints,	sdpConstraints);

								pc.createOffer(setLocalAndSendMessage,	errorCallBack,	

constraints);

};

Answering	a	call
Assuming	that	we	will	use	WebSockets	as	a	transport	protocol	for	exchanging	data	with
signaling	server,	every	client	application	should	have	a	function	to	process	messages
coming	from	the	server.	In	general,	it	looks	as	follows:

function	processSignalingMessage(message)	{

								var	msg	=	JSON.parse(message);

								if	(msg.type	===	'offer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

												doAnswer();

								}	else	if	(msg.type	===	'answer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

								}	else	if	(msg.type	===	'candidate')	{

												var	candidate	=	new	RTCIceCandidate({sdpMLineIndex:msg.label,	

candidate:msg.candidate});

												pc.addIceCandidate(candidate);

								}	else	if	(msg.type	===	'GETROOM')	{

												room	=	msg.value;

												onRoomReceived(room);

								}	else	if	(msg.type	===	'WRONGROOM')	{

												window.location.href	=	"/";

								}

};

This	function	receives	messages	from	the	signaling	server	using	the	WebSockets	layer	and
acts	appropriately.	For	this	recipe,	we	are	interested	in	the	offer	type	of	message	and
doAnswer	function.

The	doAnswer	function	is	presented	in	the	following	listing:

function	doAnswer()	{

				pc.createAnswer(setLocalAndSendMessage,	errorCallBack,	sdpConstraints);

};

The	sdpConstraints	object	describes	the	WebRTC	connection	options	to	be	used.	In
general,	it	looks	as	follows:

var	sdpConstraints	=	{'mandatory':	{'OfferToReceiveAudio':true,	

'OfferToReceiveVideo':true	}};

Here	we	can	say	that	we	would	like	to	use	both	audio	and	video	while	establishing

WebRTC	peer-to-peer	connection.

The	errorCallback	method	is	a	callback	function	that	is	called	in	case	of	an	error	during
the	calling	of	the	createAnswer	function.	In	this	callback	function,	you	can	print	a
message	to	the	console	that	might	help	to	debug	the	application.

The	setLocalAndSendMessage	function	sets	the	local	session	description	and	sends	it	back
to	the	signaling	server.	This	data	will	be	sent	as	an	answer	type	of	message,	and	then	the
signaling	server	will	route	this	message	to	the	caller:

function	setLocalAndSendMessage(sessionDescription)	{

				pc.setLocalDescription(sessionDescription);

				sendMessage(sessionDescription);

};

Note	that	you	can	find	the	full	source	code	for	this	example	supplied	with	this	book.

How	it	works…
Firstly,	we	will	ask	the	web	browser	to	gain	access	to	the	user	media	(audio	and	video).
The	web	browser	will	ask	the	user	for	these	access	rights.	If	we	get	the	access,	we	can
create	a	connection	peer	entity	and	send	the	call	message	to	the	signaling	server,	which
will	route	this	message	to	the	remote	peer.

The	workflow	of	the	code	is	very	simple.	The	processSignalingMessage	function	should
be	called	every	time	we	get	a	message	from	the	signaling	server.	Usually,	you	should	set	it
as	an	onmessage	event	handler	of	the	WebSocket	JavaScript	object.

After	the	message	is	received,	this	function	detects	the	message	type	and	acts
appropriately.	To	answer	an	incoming	call,	it	calls	the	doAnswer	function	that	will	do	the
rest	of	the	magic—prepare	the	session	description	and	send	it	back	to	the	server.

The	signaling	server	will	get	this	reply	as	an	answer	message	and	will	route	it	to	the
remote	peer.	After	that,	peers	will	have	all	the	necessary	data	on	each	other	to	start
establishing	a	direct	connection.

There’s	more…
This	is	the	basic	functionality	of	WebRTC.	Most	of	your	applications	will	probably	have
the	same	code	for	this	task.	The	only	big	difference	might	be	communication	with	the
signaling	server—you	can	use	any	protocol	you	like.

See	also
Refer	to	the	Implementing	a	chat	using	data	channels	recipe	regarding	the	process	of
building	a	simple	web	chat	application	using	WebRTC
You	can	find	more	details	on	ICE	on	the	RFC	5245	website	at
https://tools.ietf.org/html/rfc5245
More	information	regarding	SDP	can	be	found	on	RFC	4566	at
https://tools.ietf.org/html/rfc4566

https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc4566

Implementing	a	chat	using	data	channels
In	this	recipe,	we	will	implement	a	peer-to-peer	private	messaging	service	using	WebRTC
data	channels.	This	method	allows	us	to	send	messages	directly	from	peer	to	peer,	using
secure	and	safe	data	channels	provided	by	the	WebRTC	stack.

The	schema	represented	in	the	following	diagram	depicts	the	generic	feature	flow:

Getting	ready
We	will	develop	a	simple	application,	so	you	don’t	need	any	specific	preparations	for	this
recipe.	A	signaling	server	is	necessary	for	this	application,	and	it	can	be	taken	from	the
Building	a	signaling	server	in	Erlang	or	Building	a	signaling	server	in	Java	recipe.

How	to	do	it…
For	simplicity,	we	will	make	two	parts	of	the	application:	an	index	web	page	and	a
JavaScript	library.

Creating	the	main	HTML	page	of	the	application
1.	 First,	create	an	HTML	index.html	page.	In	the	following	code,	you	can	find	its

content.	Note	that	the	less	important	and	obvious	parts	might	be	skipped	here.

<!DOCTYPE	html>

<html>

<head>

2.	 Include	our	JavaScript	library	that	is	in	a	separate	file:

<script	type="text/javascript"	src="myrtclib.js"></script>

3.	 Include	Google’s	WebRTC	JavaScript	adapter:

<script	

src="https://rawgit.com/GoogleChrome/webrtc/master/samples/web/js/adapt

er.js"></script>

</head>

<body>

4.	 Create	a	div	tag	where	we	will	put	information	regarding	the	connection:

<div	id="status"></div>

5.	 Create	a	div	tag	where	the	received	messages	from	a	remote	peer	will	be	placed:

<div	id="chat"></div>

6.	 Create	a	form	with	an	input	element	and	a	button	to	send	messages	to	the	remote
peer:

<form	name="chat_form"	

onsubmit="onChatSubmit(document.chat_form.msg.value);	return	false;">

				<input	type="text"	class="search-query"	placeholder="chat	here"	

name="msg"	id="chat_input">

				<input	type="submit"	class="btn"	id="chat_submit_btn"/>

</form>

<script>

7.	 Create	a	connection	to	the	signaling	server	and	initialize	the	WebRTC	stack.	The
following	function	is	declared	in	the	JavaScript	library,	which	we	will	consider
further	in	the	recipe:

myrtclibinit("ws://localhost:30001");

Note	that	the	domain	name	and	port	might	be	different	in	your	case;	they	should	be	the
same	as	declared	in	the	source	codes	of	the	signaling	sever.	By	default,	the	signaling
server	is	listening	on	local	host	and	on	port	30001.

The	following	function	sends	a	message	to	the	remote	peer	using	the	sendDataMessage
function—we	will	write	it	as	part	of	the	JavaScript	library:

function	onChatSubmit(txt)	{

				var	msg	=	JSON.stringify({"type"	:	"chatmessage",	"txt"	:	txt});

				sendDataMessage(msg);

};

We	will	also	declare	a	callback	function	for	a	catching	event	when	a	new	virtual	room	is
created:

function	onRoomReceived(room)	{

				var	st	=	document.getElementById("status");

Create	a	link	to	share	with	the	remote	peer,	put	the	link	in	the	div	status.

				st.innerHTML	=	"Now,	if	somebody	wants	to	join	you,	should	use	this	

link:	<a	href=\""+window.location.href+"?

room="+room+"\">"+window.location.href+"?room="+room+"";

};

To	show	the	messages	received	from	the	remote	peer,	we	will	declare	an	appropriate
callback	function.	This	function	gets	the	message	and	puts	it	in	the	appropriate	place	on
the	HTML	page:

function	onPrivateMessageReceived(txt)	{

				var	t	=	document.getElementById('chat').innerHTML;

				t	+=	"
"	+	txt;

				document.getElementById('chat').innerHTML	=	t;

}

</script>

</body>

</html>

Save	the	HTML	file.	This	will	be	the	main	page	of	the	applications.

Creating	the	JavaScript	helper	library
Now,	create	an	empty	myrtclib.js	file	and	put	the	following	content	into	it.	Note	that
many	parts	of	the	following	code	might	be	used	in	the	next	chapters,	so	they	should	be
well-known	to	you	already.	Such	obvious	parts	of	the	code	might	be	skipped	in	further.

				var	RTCPeerConnection	=	null;

				var	room	=	null;

				var	initiator;

				var	pc	=	null;

				var	signalingURL;

The	following	variable	will	be	used	for	handling	the	data	channel	object:

				var	data_channel	=	null;

				var	channelReady;

				var	channel;

				var	pc_config	=	{"iceServers":

							[{url:'stun:23.21.150.121'},

								{url:'stun:stun.l.google.com:19302'}]};

				function	myrtclibinit(sURL)	{

								signalingURL	=	sURL;

								openChannel();

				};

				function	openChannel()	{

								channelReady	=	false;

								channel	=	new	WebSocket(signalingURL);

								channel.onopen	=	onChannelOpened;

								channel.onmessage	=	onChannelMessage;

								channel.onclose	=	onChannelClosed;

				};

				function	onChannelOpened()	{

								channelReady	=	true;

								createPeerConnection();

								if(location.search.substring(1,5)	==	"room")	{

												room	=	location.search.substring(6);

												sendMessage({"type"	:	"ENTERROOM",	"value"	:	room	*	1});

												initiator	=	true;

												doCall();

								}	else	{

												sendMessage({"type"	:	"GETROOM",	"value"	:	""});

												initiator	=	false;

								}

				};

				function	onChannelMessage(message)	{

								processSignalingMessage(message.data);

				};

				function	onChannelClosed()	{

								channelReady	=	false;

				};

				function	sendMessage(message)	{

								var	msgString	=	JSON.stringify(message);

								channel.send(msgString);

				};

				function	processSignalingMessage(message)	{

								var	msg	=	JSON.parse(message);

								if	(msg.type	===	'offer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

												doAnswer();

								}	else	if	(msg.type	===	'answer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

								}	else	if	(msg.type	===	'candidate')	{

												var	candidate	=	new	RTCIceCandidate({sdpMLineIndex:msg.label,	

candidate:msg.candidate});

												pc.addIceCandidate(candidate);

								}	else	if	(msg.type	===	'GETROOM')	{

												room	=	msg.value;

												onRoomReceived(room);

								}	else	if	(msg.type	===	'WRONGROOM')	{

												window.location.href	=	"/";

								}

				};

				function	createPeerConnection()	{

								try	{

												pc	=	new	RTCPeerConnection(pc_config,	null);

												pc.onicecandidate	=	onIceCandidate;

Until	now,	the	code	is	very	similar	to	what	we	used	in	a	typical	WebRTC	example
application.	Although,	now	we	will	add	something	new.	We	will	set	up	a	handler	for	the
ondatachannel	event	of	the	PeerConnection	object.	This	callback	function	will	be	called
when	the	peer	asks	us	to	create	a	data	channel	and	establish	a	data	connection:

												pc.ondatachannel	=	onDataChannel;

								}	catch	(e)	{

												console.log(e);

												pc	=	null;

												return;

								}

				};

The	handler	function	is	pretty	simple.	We	will	store	the	reference	in	the	data	channel	and
initialize	it:

				function	onDataChannel(evt)	{

								console.log('Received	data	channel	creating	request');

								data_channel	=	evt.channel;

								initDataChannel();

				}

By	initializing	the	data	channel,	I	mean	setting	up	a	channel’s	event	handlers:

				function	initDataChannel()	{

								data_channel.onopen	=	onChannelStateChange;

								data_channel.onclose	=	onChannelStateChange;

								data_channel.onmessage	=	onReceiveMessageCallback;

				}

In	the	following	function,	we	need	to	create	a	new	data	channel—not	when	the	remote
peer	is	asking	us,	but	when	we’re	the	initiator	of	the	peer	connection	and	want	to	create	a
new	data	channel.	After	we	have	created	a	new	data	channel,	we	should	ask	the	remote
peer	to	do	the	same:

				function	createDataChannel(role)	{

								try	{

When	we	create	a	new	data	channel,	we	can	set	up	a	name	of	the	channel.	In	the	following
piece	of	code,	we	will	use	the	number	of	the	virtual	room	to	name	the	channel:

												data_channel	=	pc.createDataChannel("datachannel_"+room+role,	

null);

								}	catch	(e)	{

												console.log('error	creating	data	channel	'	+	e);

												return;

								}

								initDataChannel();

				}

				function	onIceCandidate(event)	{

								if	(event.candidate)

												sendMessage({type:	'candidate',	label:	

event.candidate.sdpMLineIndex,	id:	event.candidate.sdpMid,	candidate:	

event.candidate.candidate});

				};

				function	failureCallback(e)	{

								console.log("failure	callback	"+	e.message);

				}

				function	doCall()	{

When	we	are	playing	the	role	of	the	connection	initiator	(caller),	we	create	a	new	data
channel.	Then,	during	the	connection	establishment,	the	remote	peer	will	be	asked	to	do
the	same	and	the	data	channel	connection	will	be	established:

								createDataChannel("caller");

								pc.createOffer(setLocalAndSendMessage,	failureCallback,	null);

				};

				function	doAnswer()	{

								pc.createAnswer(setLocalAndSendMessage,	failureCallback,	null);

				};

				function	setLocalAndSendMessage(sessionDescription)	{

								pc.setLocalDescription(sessionDescription);

								sendMessage(sessionDescription);

				};

To	send	text	messages	via	the	data	channel,	we	need	to	implement	the	appropriate
function.	As	you	can	see	in	the	following	code,	sending	data	to	the	data	channel	is	pretty
easy:

				function	sendDataMessage(data)	{

								data_channel.send(data);

				};

The	following	handler	is	necessary	to	print	the	state	of	the	data	channel	when	it	is
changed:

				function	onChannelStateChange()	{

								console.log('Data	channel	state	is:	'	+	data_channel.readyState);

				}

When	the	remote	peer	sends	us	a	message	via	the	data	channel,	we	will	parse	it	and	call
the	appropriate	function	to	show	the	message	on	the	web	page:

				function	onReceiveMessageCallback(event)	{

								console.log(event);

								try	{

												var	msg	=	JSON.parse(event.data);

												if	(msg.type	===	'chatmessage')	

onPrivateMessageReceived(msg.txt);

								}

								catch	(e)	{}

				};

Save	the	JavaScript	file.

Now,	start	the	signaling	server	and	open	the	HTML	file	in	a	web	browser—you	should	see
an	input	field	and	a	button	on	the	page.	At	the	top	of	the	page,	you	should	see	a	URL	to	be
shared	with	the	remote	peer.

On	another	browser’s	window,	open	the	sharing	link.	In	the	web	browser’s	console,	you
should	see	the	Data	channel	state	is	open	message.	Now,	enter	something	in	the	input
box	and	click	on	the	Submit	query	button.	You	should	see	the	message	printed	on	another
browser’s	window.

How	it	works…
When	the	application	starts,	it	establishes	a	connection	with	the	signaling	server	and	gets	a
virtual	room	number.	Then,	another	peer	starts	the	application	and	enters	the	virtual	room.
The	second	peer	is	the	caller.	When	the	peer	connection	is	established,	the	caller	creates	a
new	data	channel	and	another	peer	receives	this	event	notification.	So,	both	peers	get	a
data	channel	reference	and	can	use	it	for	data	exchanging.

In	our	example,	when	the	customer	enters	a	message	and	clicks	on	the	Submit	query
button,	we	will	wrap	the	message	into	a	JSON	object	and	send	it	via	the	data	channel.	The
remote	peer	gets	the	JSON	object,	parses	it	to	the	message,	and	displays	it	on	the	page.

There’s	more…
Using	data	channels,	peers	can	exchange	any	kind	of	data.	It	can	be	plain	text,	for
example,	or	binary	data.	Moreover,	the	same	data	channel	can	be	used	to	exchange
different	sorts	of	data	between	peers.	In	this	recipe,	we	used	JSON	to	format	messages,
and	every	packet	has	a	type	field.	To	send	text	messages,	we	used	the	chatmessage	type,
but	you	can	use	your	own	custom	type	system	to	distinguish	messages.	You	can	also	use
something	other	than	JSON.	So,	data	channels	are	a	good	tool	to	exchange	data	between
peers,	using	a	secure	and	safe	direct	connection.

See	also
Please	refer	to	the	Implementing	a	chat	using	a	signaling	server	recipe	to	learn	the
other	way	this	feature	can	be	implemented

Implementing	a	chat	using	a	signaling
server
In	this	recipe,	we	will	cover	the	process	of	implementing	private,	peer-to-peer	web	chat
using	signaling	server	as	the	middle	point.	Peers	will	send	chat	messages	via	the	signaling
server.	In	the	schema	represented	in	the	following	diagram,	you	can	see	the	flow:

How	to	do	it…
To	implement	the	chat	feature	via	the	signaling	server,	we	need	to	add	some	methods	to
the	client	code	with	the	following	steps:

1.	 We	need	to	add	appropriate	code	to	the	function	that	processes	the	messages	from	the
signaling	server:

function	processSignalingMessage(message)	{

								var	msg	=	JSON.parse(message);

								if	(msg.type	===	'CHATMSG')	{

												onChatMsgReceived(msg.value);

								}	else	if	(msg.type	===	'offer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

												doAnswer();

								}	else	if	(msg.type	===	'answer')	{

												pc.setRemoteDescription(new	RTCSessionDescription(msg));

								}	else	if	(msg.type	===	'candidate')	{

												var	candidate	=	new	

RTCIceCandidate({sdpMLineIndex:msg.label,	candidate:msg.candidate});

												pc.addIceCandidate(candidate);

								}	else	if	(msg.type	===	'GETROOM')	{

												room	=	msg.value;

												onRoomReceived(room);

								}	else	if	(msg.type	===	'WRONGROOM')	{

												window.location.href	=	"/";

								}

};

2.	 We	will	check	whether	the	received	message	is	of	the	CHATMSG	type	and	if	so,	we	will
call	the	onChatMsgReceived	method	to	process	it:

function	onChatMsgReceived(txt)	{

				var	chatArea	=	document.getElementById("chat_div");

				chatArea.innerHTML	=	chatArea.innerHTML	+	txt;

				chatArea.scrollTop	=	chatArea.scrollHeight;

};

Here,	we	will	get	the	chat_div	element	by	its	ID	and	alter	its	content	by	adding	the
chat	message	received	from	the	remote	peer	via	the	signaling	server.

3.	 To	send	a	chat	message,	we	should	implement	a	method	like	the	following:

function	chatSendMessage(msg)	{

								if	(!channelReady)	return;

								sendMessage({"type"	:	"CHATMSG",	"value"	:	msg});

};

This	function	checks	whether	the	WebSocket	channel	is	up	and	sends	a	chat	message
to	the	signaling	server	using	the	channel.	To	use	this	function,	we	can	use	the	HTML
input	tag	with	the	submit	button	and	call	it	on	the	submit	event.

How	it	works…
The	basic	principle	of	this	solution	is	pretty	simple:

One	peer	sends	a	text	message	to	the	signaling	server,	marking	it	as	the	CHATMSG	type
The	signaling	server	retransmits	the	message	to	another	peer
Another	peer	gets	the	message	from	the	signaling	server,	checks	whether	it	is	of	the
CHATMSG	type	and	if	so,	shows	it	to	the	user

Tip
To	distinguish	chat	messages	from	WebRTC	messages,	you	can	use	any	word	to	mark	the
message	type.	It	can	be	CHATMSG	or	whatever	you	prefer.

There’s	more…
This	way	of	implementing	web	chat	is	usually	not	secure	because	the	data	will	go	via	the
signaling	server	and	not	directly	through	the	peers.	Nevertheless,	it	is	suitable	for	public
chat	rooms	where	there	can	be	several	people	at	a	time.	For	private	peer-to-peer	chats,	it	is
usually	better	to	use	WebRTC	data	channels,	and	that	way	it	is	more	secure.

See	also
To	implement	the	chat	feature	using	data	channels,	follow	the	Implementing	a	chat
using	data	channels	recipe

Configuring	and	using	STUN
Your	WebRTC	application	can	work	without	STUN	or	TURN	servers	if	all	the	peers	are
located	in	the	same	plain	network.	If	your	application	is	supposed	to	work	for	peers	that
might	be	located	in	different	networks,	it	will	definitely	need	to	use	at	least	the	STUN
server	to	work.

Getting	ready
In	this	recipe,	we	will	install	a	STUN	server	on	a	Linux	box.	STUN	server	can	be	installed
under	the	other	platform	as	well,	but	for	simplicity,	we	will	consider	only	the	Linux	case.
So,	please	prepare	a	Linux	machine.

In	this	recipe,	we	will	use	a	very	basic	and	simple	STUN	server	implementation,	so	you
probably	will	not	need	to	install	additional	libraries	or	do	some	difficult	configuration.

STUN	needs	two	IP	addresses	to	work	correctly.	Thus,	when	experimenting	with	your
Linux	box,	take	care	that	the	Linux	box	should	have	at	least	two	IP	addresses	that	are
available	for	all	possible	peers	(WebRTC	clients).

How	to	do	it…
The	following	set	of	steps	will	lead	you	through	the	process	of	configuring	and	building	a
STUN	service:

1.	 Download	the	STUN	server	from	its	home	page	at
http://sourceforge.net/projects/stun/.

2.	 Unpack	the	archive	and	go	into	the	STUN	server	folder:

tar	–xzf	stund-0.97.tgz

cd	stund

3.	 Build	it	with	the	following	command:

make

The	last	command	will	build	the	server.	After	that,	you	can	start	the	STUN	server	by	using
the	following	command:

./server	-h	primary_ip	-a	secondary_ip

Note	that	instead	of	primary_ip	and	secondary_ip,	you	should	use	actual	IP	addresses
that	are	available	on	the	machine.	This	software	can’t	detect	such	network	parameters
automatically,	so	you	need	to	set	it	up	explicitly.

Tip
If	you	want	to	start	the	server	in	the	background,	add	the	-b	option	to	the	preceding
command.

Now,	when	the	STUN	server	is	configured	and	running,	we	can	utilize	it	in	the	WebRTC
application.	When	your	application	wants	to	create	a	peer	connection	object,	it	uses
something	like	the	following	code:

var	pc;

pc	=	new	RTCPeerConnection(configuration);

Here,	configuration	is	an	entity	that	contains	different	options	for	creating	peer
connection	object.	To	utilize	your	freshly	installed	STUN	server,	you	should	use
something	like	the	following	code:

var	configuration	=	{

		'iceServers':	[

				{

						'url':	'stun:stun.myserver.com:19302'

				}]	}

Here	we	inform	the	web	browser	that	it	can	use	the	STUN	server	if	necessary.	Note	that
you	should	use	the	real	domain	name	or	IP	address	of	the	STUN	server.	You	can	also
explicitly	set	the	port	number	as	shown	in	the	preceding	code,	in	case	it	is	distinguished
from	the	default	value.

http://sourceforge.net/projects/stun/

How	it	works…
STUN	server	can	help	peers	determine	their	network	parameters	and	thus	establish	a	direct
communication	channel.	If	your	clients	are	located	behind	NAT	or	firewall,	your
application	should	use	at	least	the	STUN	service	to	make	the	direct	connection	possible.
Nevertheless,	in	many	cases	that	might	not	be	enough,	and	using	TURN	might	be
necessary.

The	following	diagram	might	be	helpful	to	you	to	imagine	how	the	STUN	server	is
located	in	the	whole	infrastructure,	and	how	all	the	components	interoperate	with	each
other:

There’s	more…
As	an	alternative	to	this,	you	can	use	rfc5766-server—it	is	a	free	and	open	source
implementation	of	both	STUN	and	TURN	servers.	It	also	supports	many	additional
features	that	might	be	quite	useful.	You	can	find	it	at	https://code.google.com/p/rfc5766-
turn-server/.

https://code.google.com/p/rfc5766-turn-server/

See	also
For	details	on	how	STUN	works,	you	can	refer	to	RFC	#3489
http://www.ietf.org/rfc/rfc3489.txt.
In	the	Configuring	and	using	TURN	recipe,	we	will	use	a	TURN	server	based	on	the
rfc5766-server	software.	That	application	can	serve	as	a	STUN	server	as	well.

http://www.ietf.org/rfc/rfc3489.txt

Configuring	and	using	TURN
In	most	cases,	it	is	enough	to	use	a	STUN	server	to	establish	a	peer-to-peer	direct
connection.	Nevertheless,	you	will	often	need	to	utilize	TURN	servers—mostly	for	clients
located	in	big	companies	(because	of	firewall	policy	and	tricky	NAT)	and	some	specific
countries	(because	of	firewalls	and	access	limits).

Getting	ready
In	this	section,	we	will	download,	install,	and	do	the	basic	configuration	of	a	TURN
service.	Then,	we	will	utilize	it	in	our	WebRTC	application.	A	TURN	server	can	be
installed	under	different	platforms,	although	we	will	cover	a	Linux	box	use	case	only.
Thus,	for	this	recipe,	you	will	need	a	Linux	box	installed.

For	this	recipe,	we	will	use	rfc5766-turn-server—a	free	and	open	source	implementation
of	the	TURN	and	STUN	servers.	Download	its	source	code	from	its	home	page	at
https://code.google.com/p/rfc5766-turn-server/.

https://code.google.com/p/rfc5766-turn-server/

How	to	do	it…
First,	we	will	shortly	cover	the	installation	and	basic	configuration	of	the	TURN	server.
After	that,	we	will	learn	how	to	use	it	in	the	application.

If	you	have	TURN	server	already	installed,	you	can	skip	this	section	and	go	directly	to	the
next	one.

Installing	the	TURN	server
I	assume	that	you	have	downloaded	rfc5766-server	already	and	unpacked	it.	So,	let’s
install	and	configure	your	own	TURN	server:

1.	 Go	to	the	rfc5766-server	folder	with	the	following	command:

cd	~/turnserver-4.1.2.1

2.	 Build	the	server:

./configure

make

sudo	make	install

Tip
Note	that	rfc5766-server	needs	some	libraries	that	might	be	not	installed	on	your
system—in	particular,	libssl-dev,	libevent-dev,	and	openssl.	You	should	install
the	absent	libraries	to	compile	the	software	successfully.

3.	 After	that,	you	can	start	the	server—it	will	detect	all	the	network	options
automatically:

turnserver

You	will	see	diagnostic	messages	in	the	console:

0:	===========Discovering	relay	addresses:	=============

0:	Relay	address	to	use:	x.x.x.x

0:	Relay	address	to	use:	y.y.y.y

0:	Relay	address	to	use:	::1

0:	===

0:	Total:	3	relay	addresses	discovered

0

0:	===

Note
To	stop	the	server,	just	press	Ctrl	+	C;	you	will	get	back	to	console.

Now	it	is	time	to	perform	some	configuration	steps	and	tune	your	fresh	TURN	server	for
your	requirements.

By	default,	the	TURN	server	doesn’t	have	any	configuration	file.	We	need	to	create	this
configuration	file	from	the	default	configuration	file	supplied	with	the	server:

sudo	cp	/usr/local/etc/turnserver.conf.default	

/usr/local/etc/turnserver.conf

Open	the	turnserver.conf	file	and	edit	it	according	to	your	requirements.	We	will	not
cover	all	the	TURN	options	here,	but	just	basic	configuration	items	that	might	be
important:

Listening	IP:	This	option	determines	the	IP	addresses	that	will	be	used	by	the	TURN
server	while	operating.	By	default,	this	option	will	do	it	automatically.	Nevertheless,
it	is	a	good	idea	to	set	the	obvious	IP	addresses	you	would	like	the	server	to	use:

listening-ip=

Tip
Note	that	the	TURN	server	needs	at	least	two	public	IP	addresses	to	operate	correctly.

Relay	IP:	In	this	option,	you	can	explicitly	set	up	IP	address	that	should	be	used	for
relay.	In	other	words,	if	you	have	two	IP	addresses,	one	of	them	can	be	listening-ip
and	the	second	one	relay-ip.

relay-ip=

Verbosity:	In	this	option,	you	can	set	a	level	of	verbosity.	By	default,	the	TURN
server	will	not	print	extra	details	on	its	work,	but	for	debugging	and	diagnostic
purposes,	it	might	be	very	useful	to	set	the	verbose	level	to	normal.	For	that,	you
should	place	the	word	verbose	in	the	configuration	file.	If	you	would	like	to	refer	to
more	details,	you	should	write	the	word	with	capital	V—Verbose—so	the	server	will
print	as	much	debugging	details	as	possible.
Anonymous	access:	You	can	enable	anonymous	access	during	the	development
process,	if	you’re	sure	that	your	TURN	server	is	protected	by	network	firewall	and
nobody	can	use	it.	Otherwise,	you	should	not	enable	this	option	especially	on
production	systems:

no-auth

Note
In	this	recipe,	we	haven’t	covered	TURN	authentication—this	topic	is	covered	in	Chapter
2,	Supporting	Security.

At	this	stage,	you	have	your	own	TURN	server	with	basic	configuration,	which	can	be
used	in	WebRTC	applications.

Using	TURN	in	WebRTC	application
When	you	create	a	peer	connection	object,	you	usually	use	some	construction	like	the
following	one:

var	pc;

pc	=	new	RTCPeerConnection(configuration);

Here,	configuration	is	an	entity	that	contains	different	options	to	create	a	peer
connection	object.	To	utilize	your	TURN	server,	you	should	use	something	like	the

following:

var	configuration	=	{

		'iceServers':	[

				{

						'url':	'stun:stun.l.google.com:19302'

				},

				{

						'url':	'turn:turn1.myserver.com:3478?transport=udp',

				},

				{

						'url':	'turn:turn2.myserver.com:3478?transport=tcp',

						'credential':	'superuser',

						'username':	'secretpassword'

				}

]

}

Here,	we	will	ask	the	WebRTC	API	(actually,	we	will	ask	the	web	browser)	to	use	one	of
three	ways	when	establishing	a	peer	connection:

Public	STUN	server	provided	by	Google.
TURN	server	with	anonymous	access.	You	will	use	this	notation	to	utilize	the	TURN
server	installed	and	configured	in	this	recipe.
TURN	server	with	authentication.	In	Chapter	2,	Supporting	Security,	we	will	cover
the	topic	of	security	and	authentication	within	the	scope	of	a	TURN	server.	To	utilize
a	server	that	uses	authentication,	you	should	use	this	notation.

Tip
Note	that	you	can	ask	the	web	browser	to	use	a	UDP	or	TCP	protocol	while	establishing	a
peer	connection	through	the	TURN	server.	To	do	that,	set	up	the	transport	parameter	as
shown	in	the	preceding	bullet	points.

How	it	works…
In	some	cases,	when	clients	use	NAT	and	firewalls,	it	is	impossible	to	establish	a	peer
connection	using	STUN.	This	situation	often	appears	when	a	client	is	located	in	a
corporative	network	with	a	strict	policy.	In	such	a	case,	the	only	way	to	establish	the
connection	is	to	use	the	TURN	server.

The	TURN	server	works	as	a	proxy—all	the	data	between	peers	(including	audio,	video,
and	service	data)	goes	through	the	TURN	server.

The	following	diagram	shows	how	all	the	components	operate	with	each	other:

There’s	more…
In	this	recipe,	we	covered	only	one	TURN	solution,	open	source	and	popular,	but	there	are
other	solutions	in	the	world	that	could	also	be	suitable	for	you:

TurnServer:	This	is	also	free	and	open	source.	For	more	information,	refer	to
http://turnserver.sourceforge.net.
Numb:	This	is	not	software	that	you	can	download	and	install,	but	a	service	where
you	can	create	an	account	and	get	access	to	a	configured	TURN	server.	For	more
details,	refer	to	http://numb.viagenie.ca.

Of	course,	there	are	even	more	different	solutions	and	services	available.

http://turnserver.sourceforge.net
http://numb.viagenie.ca

See	also
For	details	on	TURN	servers,	refer	to	RFC	5766	at	http://tools.ietf.org/html/rfc5766
For	details	regarding	STUN	(another	useful	technology	with	the	scope	of	developing
WebRTC-based	services),	you	can	also	take	a	look	at	the	Configuring	and	using
STUN	recipe

http://tools.ietf.org/html/rfc5766

Chapter	2.	Supporting	Security
In	this	chapter,	we	will	cover	the	following	topics:

Generating	a	self-signed	certificate
Configuring	a	TURN	server	with	authentication
Configuring	a	web	server	to	work	over	HTTPS
Configuring	a	WebSockets	proxy	on	the	web	server
Configuring	a	firewall

Introduction
At	the	time	of	writing	this	book,	the	WebRTC	standard	was	not	complete	and	the
technology	and	its	standard	were	both	under	active	development.	Nevertheless,	security
and	safety	are	very	important	and	mandatory	functional	requirements	that	lie	at	the	basis
of	the	WebRTC	standard.	Basically,	your	WebRTC	application	should	use	only	encrypted
channels.

In	this	chapter,	we	will	cover	security-related	questions.	We	will	talk	about	security,	third-
party	components,	and	software	you	will	probably	use	when	developing	your	WebRTC
service.	We	will	talk	about	configuring	secured	channels	(HTTPS)	on	web	browsers.	We
will	cover	the	process	of	creating	secure	certificates	and	using	them	in	web	servers	as	well
as	the	TURN	service.	We	will	also	learn	how	to	implement	authentication	on	a	TURN
server	using	the	TURN	REST	API.

We	will	talk	about	how	WebRTC	can	work	through	firewalls	and	NAT,	and	learn	how	to
configure	a	firewall	on	our	server	that	is	serving	auxiliary	services	such	as	TURN	or
STUN.

Generating	a	self-signed	certificate
Using	encryption	is	highly	recommended	(I’d	say	even	mandatory)	for	WebRTC
applications.	The	technology	has	good	support	for	security	and	encryption,	so	there	is	no
reason	to	ignore	them.	In	this	recipe,	we	will	cover	the	process	of	creating	self-signed
certificates.	Such	a	certificate	can	be	used	with	a	TURN	server	or	with	a	web	server	when
operating	with	HTTPS	channels.

Typically,	a	public	key	infrastructure	(PKI)	is	a	digital	signature	from	a	certificate
authority	(CA),	which	attests	that	a	particular	PKI	is	valid	and	contains	correct
information.	Users	or	their	software	then	check	that	the	private	key	used	to	sign	a
certificate	matches	the	public	key	in	the	CA’s	certificate.	Since	CA	certificates	are	often
signed	by	other,	high-ranking	CAs,	there	must	necessarily	be	a	highest-ranking	CA,	which
provides	the	ultimate	attestation	authority	in	that	particular	PKI	scheme.

The	highest-ranking	CA’s	certificates	are	termed	as	root	certificates.	Clearly,	the	lack	of
mistakes	or	corruption	in	the	issuance	of	such	certificates	is	critical	to	the	operation	of	its
associated	PKI;	they	should	be,	and	generally	are,	issued	with	great	care.

A	self-signed	security	certificate	is	a	certificate	that	is	signed	by	the	same	entity	whose
identity	it	certifies.	Such	a	certificate	can	be	used	for	developing	purposes	and	can	be
generated	by	anybody.

You	can	find	more	details	on	PKI	at
http://en.wikipedia.org/wiki/Public_key_infrastructure.

Tip
Self-signed	certificates	can	be	used	for	development,	but	you	should	issue	trusted
certificates	for	production	systems.

All	communication	channels	in	a	WebRTC	application	should	be	using	encryption:	client-
to-client,	client-to-server,	or	any	other	kind	of	channels	you	might	be	using.	Some
WebRTC	features	(such	as	screen	sharing)	will	not	work	without	encryption,	even	in	a
development	environment.

http://en.wikipedia.org/wiki/Public_key_infrastructure

Getting	ready
In	this	recipe,	we	will	use	the	OpenSSL	toolset.

OpenSSL	is	an	open	source	multiplatform	toolkit	that	implements	Secure	Sockets	Layer
(SSL)	and	Transport	Layer	Security	(TLS)	protocols	and	provides	a	general	purpose
full-strength	cryptography	library.	Many	computer	software	use	OpenSSL	for	supporting
encryption	and	security.

You	can	find	more	details	on	this	product	at	its	home	page,	https://www.openssl.org.

Often,	it	is	installed	by	default	on	Unix-like	systems,	but	it	is	not	supplied	with	Windows
installations.	To	check	whether	your	system	has	OpenSSL	installed,	you	can	use	the
following	console	command:

openssl	version	-a

On	my	Mac,	it	produces	the	following	message:

If	you	see	something	similar,	then	you	have	OpenSSL	installed	on	your	system.	If	not,	you
need	to	install	the	tool.

Note
For	more	information	on	how	to	install	OpenSSL,	please	refer	to	its	official	home	page	at
http://www.openssl.org.

https://www.openssl.org
http://www.openssl.org

How	to	do	it…
In	this	section,	we	will	generate	public	and	private	security	certificate	keys	with	the
following	steps:

1.	 First,	generate	a	temporary	server	password	key:

openssl	genrsa	-des3	-passout	pass:x	-out	server.pass.key	2048

You	will	see	something	like	the	following	screenshot:

2.	 Using	the	server	password	key,	generate	a	server	private	key:

openssl	rsa	-passin	pass:x	-in	server.pass.key	-out	server.key

You	will	see	the	following	output:

writing	RSA	key

3.	 We	don’t	need	the	server	password	key,	so	we	can	remove	it:

rm	-rf	server.pass.key

4.	 Generate	a	certificate	signing	request:

openssl	req	-new	-key	server.key	-out	server.csr

5.	 This	will	ask	you	additional	questions	about	the	company	the	certificate	is	being
created	for—you	can	use	fictional	data.	It	will	also	prompt	you	for	a	password	as
shown	in	the	following	screenshot—for	simplicity,	you	can	just	press	return:

6.	 Generate	the	certificate:

openssl	x509	-req	-days	365	-in	server.csr	-signkey	server.key	-out	

server.crt

You	will	see	the	following	output:

Now	you	have	two	files,	server.crt	(the	certificate)	and	server.key	(the	certificate’s
private	key),	which	can	be	used	with	your	web	server	(operating	over	HTTPS)	or	TURN
server.

How	it	works…
By	using	an	OpenSSL	tool,	we	generated	a	new	self-signed	security	certificate	that	can	be
used	with	a	web	server	or	a	TURN	server	that	is	serving	our	WebRTC	application.

Note
Kindly	note	that	we	generated	the	certificate	in	PEM	format.	For	some	software,	it	might
be	necessary	to	convert	it	to	other	formats.

Though	the	certificate	implements	full	encryption,	your	website	visitors	will	see	a	browser
warning	indicating	that	The	certificate	should	not	be	trusted!.

If	a	self-signed	certificate	has	been	used	to	create	a	WebSocket	server,	then	your	web
browser	will	fail	when	trying	to	establish	a	connection	to	the	server	and	will	not	show	any
warning.	To	solve	such	a	case,	you	can	configure	a	web	server	to	be	secured,	but	leave	the
WebSocket	server	unsecured;	then,	you	should	configure	a	WebSocket	proxy	on	the	web
server.	Thus,	the	client	will	communicate	with	the	WebSocket	server	not	directly,	but
through	the	web	server	using	a	secured	channel.	Please	refer	to	the	Configuring	a
WebSockets	proxy	on	the	web	server	recipe.

So,	use	self-signed	certificates	for	developing	only.

There’s	more…
For	production	systems,	you	should	use	trusted	certificates	emitted	by	such	trusted	centers
such	as	Verisign,	Thawte,	or	others.

You	can	also	start	with	a	free-of-charge	but	trusted	certificate	from	StartSSL.	For	more
details,	refer	to	http://www.startssl.com.

If	you	have	a	Windows	box,	you	can	use	the	SelfSSL.exe	tool	to	create	a	self-signed
certificate.	This	tool	is	part	of	Internet	Information	Services	(IIS)	Resource	Kit	Tools
that	can	be	found	at	http://www.microsoft.com/en-gb/download/details.aspx?id=17275.

You	can	also	use	online	tools	to	create	a	self-signed	certificate,	for	example,	this	one	at
http://www.selfsignedcertificate.com.

http://www.startssl.com
http://www.microsoft.com/en-gb/download/details.aspx?id=17275
http://www.selfsignedcertificate.com

See	also
You	can	find	more	details	on	how	to	use	certificates	in	the	Configuring	a	TURN
server	with	authentication	and	Configuring	a	web	server	to	work	over	HTTPS
recipes.

Configuring	a	TURN	server	with
authentication
STUN	servers	don’t	support	authentication,	but	on	the	other	hand,	TURN	servers	do.
Moreover,	if	you	maintain	a	TURN	server,	it	has	to	support	authentication	and	prohibit
anonymous	access.	When	using	a	TURN	service,	all	the	traffic	from	one	peer	to	another
goes	through	the	TURN	server.	If	anyone	had	anonymous	access	to	such	a	server,	they
could	very	quickly	utilize	the	server’s	resources	and	traffic	limits.

In	this	recipe,	we	are	going	to	go	through	a	TURN	authentication	task.

Getting	ready
First	of	all,	we	need	to	download	and	install	a	TURN	server.	There	are	several
implementations,	and	in	this	recipe,	we	will	consider	using	rfc5766-turn-server.

This	software	is	multiplatform	and	can	be	used	on	Unix-like	systems	and	on	Windows
systems	as	well.	Nevertheless,	to	keep	it	simple,	in	this	recipe,	we	will	cover	a	Linux-
based	case	only.

Download	the	source	code	from	the	TURN	server	home	page	at
https://code.google.com/p/rfc5766-turn-server/.

To	install	the	software,	you	might	need	other	additional	packages	to	be	installed	first:

mysqlclient-dev

libevent

libmysqlclient-dev

libevent-dev

libssl-dev

Please	use	your	package	installation	tool	to	install	necessary	packets.

Note
The	package	list	might	vary	for	different	Linux	distributions.

Unpack	the	downloaded	TURN	server	package	into	a	new	folder,	go	to	it,	and	then
compile	and	install	the	software	using	the	following	commands:

./configure

make

sudo	make	install

If	you	didn’t	change	the	installation	prefix,	the	configuration	file	will	be	placed	at
/usr/local/etc/turnserver.conf.

Now,	we	need	to	edit	this	file,	changing	the	necessary	options.	We	will	not	cover	all	the
configuration	options,	but	just	the	ones	that	are	necessary	to	achieve	our	goal:

1.	 First,	ensure	the	support	for	encrypted	transport:

tls-listening-port=5349

2.	 Switch	the	verbose	mode	on:

verbose

Tip
You	don’t	want	verbose	enabled	on	a	production	system,	but	it	is	very	useful	for
debug	purposes.	I’d	recommend	you	keep	it	enabled	during	the
developing/debugging	process,	and	then	disable	it	when	you	deploy	your	application
to	the	production	system.

3.	 Enable	a	long-term	credential	mechanism—a	REST	API	can	be	used	with	long-term

https://code.google.com/p/rfc5766-turn-server/

credentials	only:

lt-cred-mech

4.	 Comment	out	the	short-term	credential	mechanism	option:

#st-cred-mech

5.	 Enable	the	REST	API:

use-auth-secret

6.	 Determine	the	static	authentication	secret—the	client	will	use	this	value	when
calculating	the	temporary	password	for	accessing	the	TURN	server:

static-auth-secret=<SuperSecretKey>

7.	 Set	up	the	realm	(usually,	the	company’s	website	domain	name):

realm=mycompany.org

8.	 Set	up	the	generated	security	certificate:

cert=/usr/local/etc/turn_server_cert.pem

9.	 Set	up	the	certificate	private	key:

pkey=/usr/local/etc/turn_server_pkey.pem

10.	 Set	up	the	security	certificate	key	password.	This	option	is	important	if	you	use	a
certificate	protected	by	a	password.	If	the	key	is	password-less,	then	leave	this	option
commented	out:

#pkey-pwd=

11.	 Using	the	enable	console	feature,	you	can	connect	to	the	TURN	server	console	and
control	the	server,	or	just	get	some	statistics.	It	is	very	useful	for	debugging:

cli-ip=127.0.0.1

cli-port=5766

12.	 Set	up	the	console	password:

cli-password=<you-cli-password>

How	to	do	it…
Now	we	have	a	TURN	server	installed	and	configured.	Next,	we	need	to	make	appropriate
changes	on	the	client-side	code	(that	will	be	executed	by	the	web	browser)	and	on	the
server-side	code.

What	is	important	for	this	feature	is	that	your	web	application	should	have	a	user
authentication	mechanism	implemented.	The	application	should	have	a	private	area	where
only	authorized	users	can	get	access.

The	certain	implementation	depends	on	the	platform/framework	you	use	for	developing
the	application.

Implementing	the	client-side	code
The	general	flow	to	implement	the	client-side	code	is	as	follows:

1.	 The	application	has	some	kind	of	authorization	form	with	a	login	and	password.	The
web	page	with	the	WebRTC	feature	should	be	hidden	behind	the	login	page	and
access	should	be	restricted	to	authorized	users	only.

2.	 After	the	user	enters	correct	credentials	and	has	been	authorized,	he/she	can	have
access	to	a	private	area.

3.	 When	a	user	is	authorized,	he/she	should	be	forwarded	to	the	private	area	where	the
WebRTC	interactive	page	is	placed.

4.	 The	interactive	page	that	a	user	gets	from	the	web	server	should	contain	correct
credentials	for	accessing	the	TURN	server.	These	credentials	are	calculated	by	the
web	server	and	are	then	sent	to	the	authorized	client.

The	following	fragment	is	an	example	of	what	an	authorized	client	should	get	from	the
web	server:

var	iceServers	=	[

				{

								'url'	:	'turn:turn1.website.com',

								'credential'	:	'dejwjhkuyui4BUHiebdiejbi',

								'username'	:	'secretuser'

				}

];

Here,	the	credential	field	is	the	temporary	password	calculated	on	the	web	server	that
can	be	used	to	access	the	TURN	server.	Only	authorized	users	can	get	it—username	is
also	used	while	calculating	the	password	(refer	to	the	Implementing	the	server-side	code
section	of	this	recipe).

The	client	should	use	this	data	when	accessing	the	TURN	server	(pseudo	code):

pc_config	=	{"iceServers":	iceServers};

var	pc	=	RTCPeerConnection(pc_config,	pc_constraints);

Implementing	the	server-side	code

Server-side	code	can	be	implemented	using	any	language	and	technology	you	like.	If	you
are	a	Java	programmer,	the	easiest	way	would	be	to	use	Java	Spring	or	Play	Framework.

The	web	server	should	provide	the	following	flow	for	implementing	server-side	code:

1.	 Authenticated	users	should	access	the	WebRTC	interactive	web	page	only.
2.	 When	a	user	is	authenticated	using	the	login	page,	they	should	be	forwarded	to	the

private	area	(the	WebRTC	interactive	page).
3.	 During	the	authentication	process,	the	web	server	should	store	the	user	login.
4.	 The	web	server	should	calculate	the	TURN	temporary	access	password	using	the

following	formula:

base64(hmac(secret	key,	username))

Here	you	can	see	the	following:

secret	key:	This	is	the	static-auth-key	option	from	the	TURN	server
configuration	(refer	to	the	Getting	ready	section	of	this	recipe)
username:	This	is	the	username	the	web	server	gets	from	the	user	during	the
authentication
hmac:	This	is	the	hash	function	of	secret	key	and	username
base64:	This	function	implements	the	base64	encoding	algorithm,	and	we	apply
it	to	the	result	of	the	hmac	function

5.	 After	the	temporary	password	is	calculated,	it	should	be	sent	to	the	client.

How	it	works…
In	this	recipe,	we	will	utilize	the	TURN	REST	API.	The	main	goal	of	this	API	is	to
provide	a	mechanism	that	will	enable	dynamic	temporary	passwords,	which	can	be	used
with	TURN	servers	when	authenticating.

The	general	TURN	authentication	flow	is	as	follows:

The	client	(a	web	browser)	sends	a	request	to	the	application	(that	is	working	on	the
server	side)	asking	for	TURN	credentials.	Optionally,	the	request	can	also	include	the
username.
The	application	responds	with	a	TURN	URL,	username,	and	password.

The	client	then	uses	these	credentials	for	further	authentication	on	the	TURN	server.	The
application	then	replies	with	the	following	data:

Username:	This	is	the	TURN	username	that	the	client	has	to	use	when
authenticating.	This	name	is	a	colon-delimited	combination	of	the	expiration
timestamp	and	username	parameter	from	the	client’s	original	request.	If	the	username
is	not	specified,	the	server	can	use	any	other	value	here.
Password:	This	is	the	TURN	password	that	the	client	has	to	use	when	authenticating.
This	value	is	calculated	by	the	server	using	the	following	algorithm:
base64(hmac(secret	key,	username)).	The	TURN	server	and	the	server
application	both	share	the	same	secret	key.	So,	the	TURN	server	will	do	the	same
calculations	and	will	compare	them	to	the	credentials	received	from	the	client.

Note
Kindly	note	that	credentials	are	temporary	(time	limited).

TTL:	This	value	represents	the	time-to-live	parameter.	It	is	optional	and	we	won’t
use	this	field	on	our	application.
URIs:	This	field	represents	an	array	of	URLs	of	the	TURN	server(s)	available.	In	our
case,	we	will	send	just	one	URL	to	our	own	TURN	server.

There’s	more…
This	feature	is	not	a	part	of	the	final	standard	yet,	so	in	the	future,	some	aspects	of	this
recipe	might	need	to	be	improved.

See	also
Refer	to	the	Generating	a	self-signed	certificate	recipe	on	how	to	create	self-signed
certificates.
Take	a	look	at	the	TURN	server’s	REST	API	standard	draft	at
http://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest.
The	PDF	from	the	rfc5766-trun-server	documentation	can	be	useful.	For	more
details,	refer	to	https://rfc5766-turn-
server.googlecode.com/svn/docs/TURNServerRESTAPI.pdf.

http://tools.ietf.org/html/draft-uberti-rtcweb-turn-rest
https://rfc5766-turn-server.googlecode.com/svn/docs/TURNServerRESTAPI.pdf

Configuring	a	web	server	to	work	over
HTTPS
In	this	recipe,	we	will	cover	how	to	configure	a	secured	layer	(HTTPS)	on	a	web	server.
As	far	as	encryption	and	security	are	mandatory	for	WebRTC,	HTTPS	is	an	important	part
of	the	whole	application’s	security	and	safety.

Getting	ready
We	will	cover	the	three	most	popular	web	servers:	Nginx,	Apache	HTTP	Server,	and	IIS
from	Microsoft.	We	will	not	cover	the	installation	procedure,	so	you	should	have	the	web
server	you	wish	to	use	installed	and	properly	configured.

How	to	do	it…
What	we	need	to	do	is	to	edit	the	web	server’s	configuration	to	switch	on	using	HTTPS.
Before	we	make	the	configuration	changes,	you	need	to	have	the	generated	security
certificate.	Usually,	it	is	two	files:	a	certificate	and	certificate	key.	But	it	is	possible	to	join
these	two	files	into	just	one.	In	this	recipe,	we	will	consider	the	first	option,	with	two	files.

These	certificate	files	(server.crt	and	server.key)	can	be	trusted	SSL	certificates	or
they	can	be	self-signed	certificates.

Configuring	Nginx
You	should	edit	the	website’s	configuration	file—usually,	it	is	located	under
/etc/nginx/sites-enabled/website.com:

1.	 The	following	configuration	fragment	shows	important	changes	that	you	should
make:

server	{

2.	 We	will	ask	the	web	server	to	listen	on	port	443	(default	port	for	HTTPS)	and	use
SSL:

listen														443	ssl;

3.	 You	should	also	set	up	the	website’s	name—as	you	would	do	for	a	non-secured
website:

server_name									www.example.com;

4.	 For	a	secured	website,	we	need	to	set	up	the	SSL	certificate	and	SSL	certificate	key.
Technically,	they’re	just	two	files	generated	in	a	specific	way:

ssl_certificate				/etc/nginx/ssl/certs/server.crt;

ssl_certificate_key	/etc/nginx/ssl/private/server.key;

}

Note
A	good	practice	is	to	keep	.crt	and	.key	files	in	different	folders,	as	you	can	see	in
the	preceding	code.	So	don’t	forget	to	copy	both	files	of	your	security	certificate	to
proper	places.	Create	appropriate	folders	if	necessary.

5.	 You	will	need	to	reload	the	web	server	after	these	changes.	For	Ubuntu,	this	can	be
done	using	the	following	command:

sudo	service	nginx	reload

6.	 Alternatively,	you	can	restart	the	whole	web	server	using	the	following	command:

sudo	service	nginx	restart

Configuring	Apache

You	should	edit	the	website’s	configuration	file—usually,	it	can	be	found	under
/etc/apache2/sites-available/website.conf.

We	will	not	cover	all	the	configuration	files	but	will	consider	relevant	changes:

1.	 Add	the	option	to	make	the	Apache	web	server	listen	on	the	HTTPS	default	port
NameVirtualHost	*:443.

2.	 Make	necessary	changes	in	the	appropriate	VirtualHost	section:

<VirtualHost	*:443>

ServerAdmin	webmaster@website.com

DocumentRoot	/var/www/website.com

ServerName	www.website.com

DirectoryIndex	index.php

ErrorLog	/var/log/apache2/vhost1-error.log

CustomLog	/var/log/apache2/vhost1-access.log	combined

SSLEngine	On

SSLCertificateFile	/etc/apache2/ssl/server.crt

SSLCertificateKeyFile	/etc/apache2/ssl/server.key

<Location	/>

SSLRequireSSL	On

SSLVerifyClient	optional

SSLVerifyDepth	1

SSLOptions	+StdEnvVars	+StrictRequire

</Location>

</VirtualHost>

3.	 After	you’ve	made	these	changes,	you	need	to	restart	the	Apache	HTTP	Server.

Configuring	IIS
In	this	section,	we	will	cover	how	to	configure	IIS	to	use	the	SSL	certificate:

1.	 Log	on	to	the	web	server	computer	as	an	administrator.
2.	 Click	on	Start,	point	to	settings,	and	then	click	on	Control	Panel.
3.	 Double-click	on	Administrative	Tools,	and	then	double-click	on	Internet	Services

Manager.
4.	 Select	the	website	from	the	list	of	different	served	sites	in	the	left	pane.
5.	 Right-click	on	the	website	on	which	you	want	to	configure	SSL,	and	then	click	on

Properties.
6.	 Click	on	the	Directory	Security	tab.
7.	 Click	on	Edit	and	then	on	Require	secure-channel	(SSL).
8.	 Click	on	Require	128-bit	encryption	to	configure	128-bit	(instead	of	40-bit)

encryption	support.
9.	 To	allow	users	to	connect	without	supplying	their	own	certificate,	click	on	Ignore

client	certificates:

There’s	more…
The	configuration	process	might	vary	depending	on	the	certain	web	server	version	you
use.	Please	refer	to	the	appropriate	vendor’s	documentation	provided	with	the	web	server
you	use	for	specific	details.

See	also
Refer	to	the	Generating	a	self-signed	certificate	recipe	for	details	on	how	to	create	self-
signed	certificates.	There	you	can	also	find	additional	information	on	where	to	start	if	you
would	like	to	get	a	trusted	certificate	to	use	in	production.

Configuring	a	WebSockets	proxy	on	the
web	server
WebSockets	is	a	new	protocol	that	enables	active	messaging	from	server	to	client.	It	is
supported	by	all	modern	web	browsers.	This	protocol	is	implemented	on	top	of	HTTP	and
can	be	easily	served	by	most	popular	web	servers.	It	can	also	be	served	over	secured
channels,	such	as	HTTPS.	Because	of	WebSockets’	advantages,	people	often	choose	this
protocol	for	their	client-server	projects.	In	WebRTC-based	applications,	WebSockets
usually	serves	as	a	transport	protocol	for	signaling	server	implementation.

Configuring	a	WebSockets	proxy	on	a	web	server	can	be	very	useful	if	you	have	used
WebSockets	as	a	transport	layer	for	communicating	with	the	signaling	server.	For	some
cases,	it	might	even	be	mandatory.

Getting	ready
Configuring	this	feature	requires	making	changes	in	the	configuration	files	of	the	web
server.	We	will	not	cover	the	entire	web	server’s	installation	and	configuration	process,	so
you	need	to	have	the	web	server	up	and	running.

How	to	do	it…
We	will	make	necessary	configuration	changes	to	the	web	server	to	achieve	the	goal.

Configuring	Nginx
The	website’s	configuration	files	are	usually	located	under	the	/etc/nginx/sites-
enabled	folder:

1.	 The	following	piece	of	the	website	configuration	file	shows	the	WebSockets	proxy
settings:

location	/websocket	{

2.	 Here	we	will	set	the	local	service	that	will	be	serving	WebSocket	requests	for	the	web
server:

proxy_pass	http://localhost:16384;

3.	 Indicate	that	we	will	work	with	HTTP	protocol	version	1.1—WebSockets	is	not
supported	on	lower	HTTP	versions:

proxy_http_version	1.1;

proxy_set_header	Upgrade	$http_upgrade;

proxy_set_header	Connection	"upgrade";

proxy_redirect	off;

4.	 Here	we	can	set	additional	options	asking	the	web	server	to	send	useful	details	about
connected	clients	in	the	HTTP	headers:

proxy_set_header			Host													$host;

proxy_set_header			X-Real-IP								$remote_addr;

proxy_set_header			X-Forwarded-For	$proxy_add_x_forwarded_for;

}

5.	 You	will	need	to	restart	Nginx	or	reload	its	configuration	after	you’ve	made	these
changes.

Tip
You	need	a	separate	location	section	for	every	WebSocket	URL	that	you	need	to	proxy	via
the	web	server.

Configuring	Apache
Apache	doesn’t	support	this	feature	from	scratch	(at	least,	for	versions	>=	2.4).
Nevertheless,	there	are	some	third-party	modules	that	can	help	us	with	this.	In	this	recipe,
we	will	use	the	apache-websocket	module,	available	at
https://github.com/disconnect/apache-websocket:

1.	 The	following	configuration	fragment	shows	how	to	use	the	module:

<IfModule	mod_websocket.c>

				<Location	/websocket>

https://github.com/disconnect/apache-websocket

							SetHandler	websocket-handler

								WebSocketHandler		

/usr/lib/apache2/modules/mod_websocket_tcp_proxy.so	tcp_proxy_init

								WebSocketTcpProxyBase64	on

								WebSocketTcpProxyHost	localhost

								WebSocketTcpProxyPort	16384

								WebSocketTcpProxyProtocol	base64

				</Location>

</IfModule>

2.	 On	a	default	Apache	installation,	you	might	want	to	change	your	request	read	timeout
option:

<IfModule	reqtimeout_module>

		RequestReadTimeout	body=300,minrate=1

</IfModule>

3.	 You	can	track	native	support	of	this	feature	in	Apache	using
https://issues.apache.org/bugzilla/show_bug.cgi?id=47485.

Configuring	IIS
The	WebSocket	proxy	feature	is	available	in	IIS	version	8	and	is	not	supported	in	older	IIS
versions.

You	should	install	Application	Request	Routing	(ARR)	3.0	or	a	newer	version.	This	is	a
proxy-based	routing	module	that	serves	to	forward	HTTP	requests	to	content	servers.

According	to	Microsoft’s	recommendations,	ARR	should	be	installed	using	the	Web
Platform	Installer	(WebPI)	module.

https://issues.apache.org/bugzilla/show_bug.cgi?id=47485

Choose	Application	Request	Routing	3.0	as	depicted	in	the	preceding	screenshot,	and
click	on	the	Add	button	and	then	click	on	Install.	During	the	installation	process,	you	will
see	the	screen	shown	in	the	following	screenshot:

After	ARR	is	installed,	you	will	see	an	appropriate	message	as	shown	in	the	following
screenshot:

Now,	when	ARR	is	installed	successfully,	you	should	install	the	WebSockets	features	on
IIS	using	the	Server	Manager	component	and	its	Manage	and	Add	Roles	and	Features
menus,	as	shown	in	the	following	screenshot:

Once	the	installation	is	complete,	ARR	will	handle	WebSockets	requests	appropriately.

How	it	works…
Using	secure	channels	is	mandatory	for	a	WebRTC	application.	In	our	recipes,	we	have
used	WebSockets	as	a	transport	protocol	to	communicate	with	the	signaling	server.	The
main	goal	of	using	a	WebSockets	proxy	is	to	hide	the	WebSockets	service	(signaling
server)	behind	the	web	server,	which	is	serving	over	HTTPS	(secured	layer).	In	such	a
case,	we	don’t	need	to	configure	HTTPS	on	the	signaling	server	itself.

The	following	diagram	depicts	the	way	this	works.	When	the	client	(web	browser)	makes
a	request	to	the	signaling	server	using	WebSockets,	it	doesn’t	make	the	request	to	the
signaling	server	directly,	but	to	the	web	server	(using	a	secured	channel,	HTTPS).	Then,
the	web	server	forwards	this	request	to	the	signaling	server	(using	the	usual,	non-secured
layer),	and	then	it	forwards	the	response	back	to	the	client	(the	web	browser).

The	benefits	of	using	such	a	solution	are	as	follows:

You	don’t	need	to	open	a	listening	port	of	the	signaling	server	to	the	external	world
You	need	to	configure	a	secured	layer	for	the	web	server	only,	and	no	need	to
configure	it	for	the	signaling	server
On	the	client	side,	you	can	use	the	same	domain	and	port

Tip
These	benefits	are	relevant	if	you	have	a	web	server	and	signaling	server	both	installed	on
the	same	machine.

There’s	more…
The	configuration	process	might	vary	depending	on	the	certain	web	server	version	you
use.	WebSockets	is	a	young	technology	and	is	not	supported	by	old	web	servers.	The	web
server	should	support	HTTP	1.1	to	be	able	to	support	WebSockets	and	the	WebSockets
proxy.	So,	you	should	use	the	newest	web	server	version.

You’re	not	limited	to	using	WebSockets	for	the	signaling	server	transport	protocol.	This	is
just	a	particular	case.	You	can	use	any	transport	you	like	for	this	purpose.	So,	if	you	prefer
to	use	something	different	rather	than	WebSockets,	this	proxy	feature	might	not	be
relevant	for	you,	or	you	might	have	to	use	other	solutions	to	make	your	protocol	of	choice
secure	and	safe.

See	also
In	this	recipe,	we	built	the	signaling	server	behind	the	web	server	to	utilize	its
HTTPS	(secured	layer).	For	more	details	on	how	to	configure	HTTPS	for	web
servers,	please	refer	to	the	Configuring	a	web	server	to	work	over	HTTPS	recipe.

Configuring	a	firewall
If	you	develop	a	WebRTC	application	and	maintain	your	own	infrastructure
(STUN/TURN	servers,	web	servers),	then	a	properly	configured	firewall	is	very	important
for	you.	Usually,	every	server	has	a	network	firewall	configured	and	running.
Misconfigured	firewalls	can	block	services	and	cause	side	effects.	With	WebRTC,	a
misconfigured	firewall	can	lead	the	application	to	DoS	(denial	of	service)	or	make	some
parts	of	it	unworkable;	for	example,	you	can	hear	audio	but	can’t	see	video.

In	this	recipe,	we	will	cover	basic	information	that	might	help	you	to	configure	a	network
firewall	properly.

Getting	ready
There	are	many	firewall	implementations,	and	it	is	impossible	to	cover	all	of	them.	So
here,	we	will	mostly	talk	about	recommendations	rather	than	practical	commands	and
codes.

Find	which	firewall	is	used	on	your	system.	On	Windows,	it	is	a	built-in	firewall.	On
Linux	systems,	you	often	have	iptables.	On	BSD	systems,	it	can	be	pf	or	ipfw.	Mac
systems	usually	use	tools	from	the	BSD	family.	Your	system	might	even	be	using	some
kind	of	third-party	tool,	so	you	should	refer	to	the	relevant	documentation	of	the	firewall
tool	that	is	used	on	your	system.

How	to	do	it…
It	is	worth	considering	how	to	configure	a	firewall	in	the	scope	of	server	side	and	client
side	separately.

Configuring	a	firewall	on	a	server
If	you	have	your	own	server(s)	for	all	your	WebRTC	application	components	(STUN,
TURN,	web	server,	any	other	kind	of	network	services),	it	is	worth	knowing	which	ports
and	protocols	can	be	used	by	these	components	to	create	an	appropriate	networking
policy.	Otherwise,	your	application	might	fail	to	access	these	services.

Default	port	numbers	for	known	services	relevant	for	WebRTC	applications	are	as
follows:

STUN/TURN:	Ports	3478	and	5349,	UDP	and	TCP.	The	second	port	is	used	for	TLS.
Web:	TCP	port	80	for	HTTP	and	TCP	port	443	for	HTTPS.
Signaling	server:	This	depends	on	the	technology	and	protocol	you	use.	Using	this	is
a	good	idea	if	you	can	hide	the	signaling	server	behind	the	web	server	so	that	the
signaling	server	can	listen	on	localhost	only,	and	not	listen	to	the	external	world.
If	you’re	using	TURN,	your	server	should	have	two	IP	addresses—keep	this	fact	in
mind	when	configuring	a	firewall.
All	the	preceding	ports	should	be	opened	and	accessible	to	the	external	world.

Configuring	a	firewall	on	a	client
Of	course,	you	can’t	control	a	firewall	on	the	user’s	side.	Nevertheless,	the	following
details	could	help	you	while	debugging	or	problem	solving.

WebRTC	has	great	built-in	mechanisms	and	features	to	handle	firewalls	and	Network
Address	Translation	(NAT).	It	can	utilize	Interactive	Connectivity	Establishment
(ICE),	which	it	supports	via	TURN	and	using	STUN	services.

The	following	screenshot	shows	two	cases:

The	communication	process	between	clients	and	the	signaling	server
Direct	communication	between	peers	after	signalization

Signalization	is	necessary	when	peers	are	located	on	different	networks.	The	signaling
server	should	be	known	and	accessible	to	all	peers,	and	then	they	can	exchange	data	with
each	other	via	network	data	using	the	signaling	server,	and	then	establish	direct
connection.

However,	if	a	peer	is	located	behind	a	NAT/firewall,	then	this	will	not	work—peers	have
no	way	to	know	their	own	external	network	addresses,	so	establishing	the	direct
connection	is	problematic.

The	following	screenshot	shows	such	a	case:

In	this	case,	before	peers	can	establish	a	direct	connection,	a	STUN	service	should	be	used
by	peers	to	detect	their	network	parameters.	STUN	allows	peers	to	know	about	their
external	IP	addresses.	Nevertheless,	in	many	cases	it	will	not	work—many	users	are
located	behind	a	NAT	and	firewall.

If	STUN	didn’t	help,	the	only	solution	that	might	solve	the	issue	is	a	TURN	server.	In	this
case,	all	the	data	between	peers	will	go	through	the	TURN	server—it	will	proxy	all	media
and	other	data	that	peers	will	transfer	to	each	other.	In	other	words,	there	will	not	be	a
direct	peer-to-peer	connection	established,	and	all	communication	will	be	done	via	the
TURN	server	in	the	middle.

This	is	why	you	will	probably	want	to	have	your	own	TURN	server—many	business
clients	have	very	strong	network	policies	and	very	complex	firewall/NAT	configurations,
so	simple	solutions	will	just	not	work	in	their	cases.

Tip
If	you	develop	your	web	application	or	service	using	WebRTC,	consider	installing	your
own	STUN	and	TURN	servers	at	the	very	beginning.

The	schema	in	the	following	diagram	depicts	the	data	flow	while	using	a	TURN	server:

See	also
Take	a	look	at	the	Configuring	a	WebSockets	proxy	on	the	web	server	recipe	for
details	on	how	to	hide	the	signaling	server	(the	case	using	WebSockets	as	the
transport	layer)	behind	the	web	server

Chapter	3.	Integrating	WebRTC
In	this	chapter,	we	will	cover	the	following	topics:

Integrating	WebRTC	with	Asterisk
Integrating	WebRTC	with	FreeSWITCH
Making	calls	from	a	web	page
Integration	of	WebRTC	with	web	cameras

Introduction
This	chapter	is	fully	dedicated	to	the	topic	of	integrating	WebRTC	with	the	rest	of	the
world—other	components,	technologies,	and	services.

You	will	find	recipes	on	integration	of	WebRTC	with	VoIP	platforms	(Asterisk	and
FreeSWITCH),	and	will	learn	how	to	implement	a	simple	solution	in	the	Making	calls
from	a	web	page	recipe	using	WebRTC	and	SIP.	We	will	also	cover	the	integration	of
WebRTC	with	web	cameras.

In	this	chapter,	we	will	not	write	code,	but	will	install	and	configure	third-party
applications	and	libraries,	connecting	them	with	each	other	in	order	to	achieve	the	goal.
Most	of	software	that	we	have	covered	is	cross-platform,	but	to	simplify	the	task,	we	will
cover	Linux-based	installations	only.	So,	for	most	of	recipes,	you	will	need	to	have	a
prepared	Linux	machine.	Since	we	will	consider	simple	cases,	it	will	not	need	many
resources,	so	if	you	don’t	have	a	ready-to-use	Linux	box,	you	can	use	some	special
software	for	creating	virtual	Linux	machine	to	work	on	the	recipes.	It	can	be	VMware,
VirtualBox,	or	any	other	solution	you	like.	You	can	use	any	Linux	distribution	for	these
purposes;	I	personally	used	Ubuntu	while	working	on	this	book.

Note
Some	commands	or	system	paths	might	be	different	for	different	Linux	distributions.

The	recipes	of	this	chapter	don’t	cover	all	the	completed	solutions	from	scratch,	and	cover
specific	questions	only.	So,	it	is	assumed	that	you	have	basic	knowledge	of	using	the
Linux	command	line	and	have	basic	experience	of	installing	and	configuring	Linux
software.

Integrating	WebRTC	with	Asterisk
In	this	recipe,	we	will	cover	the	integration	of	WebRTC	with	Asterisk—an	open	source
platform	used	to	build	communications	applications.	Asterisk	turns	an	ordinary	computer
into	a	communications	server.	Asterisk	powers	IP	PBX	systems,	VoIP	gateways,
conference	servers,	and	other	custom	solutions.	It	is	used	worldwide	by	small	and	large
businesses,	call	centers,	carriers,	and	government	agencies.

Asterisk-based	telephony	solutions	offer	a	rich	and	flexible	feature	set.	Asterisk	offers
both	classic	PBX	functionality	and	advanced	features,	and	interoperates	with	traditional
standards-based	telephony	systems	and	Voice	over	IP	systems.	Asterisk	offers	the
advanced	features	that	are	often	associated	with	large,	high-end	(and	high	cost)	proprietary
PBXs.

Getting	ready
In	this	recipe,	we	will	work	under	Linux.	So,	prepare	a	Linux	box.	We	also	will	use	tools
such	as	Git	and	SVN—install	them	if	they’re	not	installed	yet	on	your	machine.

You	might	wish	to	install	FreePBX	to	make	your	life	easier	when	configuring	Asterisk.
This	software	can	be	found	on	its	home	page	at	http://www.freepbx.org.

I	assume	that	you	have	some	experience	with	installing	and	configuring	Linux	software.	If
not,	you	can	refer	to	a	help	page	on	Linux	basics,	for	example,
http://manuals.bioinformatics.ucr.edu/home/linux-basics.

http://www.freepbx.org
http://manuals.bioinformatics.ucr.edu/home/linux-basics

How	to	do	it…
During	this	recipe,	we	will	install	and	configure	a	set	of	applications	and	build	a	service
by	integrating	these	applications	with	each	other.	We	will	not	cover	all	the	installation	and
configuration	steps	from	scratch,	but	will	cover	specific	steps	only	that	might	be	relevant
in	to	this	recipe.

Installing	libSRTP
Before	we	compile	and	install	Asterisk,	we	need	to	install	libSRTP—a	software	library
that	provides	an	SRTP	(Secure	Real-time	Transport	Protocol)	implementation.	Asterisk
should	support	SRTP	for	integrating	with	a	WebRTC	application.	The	support	of	this
protocol	is	necessary	because	WebRTC	uses	secured	channels	to	build	communication
between	peers.	We	install	libSRTP	with	the	following	steps:

1.	 Create	a	directory	~/src/libsrtp	and	go	to	it.
2.	 Download	libsrtp	to	the	folder	from	the	library’s	home	page,

http://sourceforge.net/projects/srtp/files/.
3.	 Unpack	the	downloaded	archive	and	go	into	the	srtp	folder.
4.	 Compile	the	library:

./configure	CFLAGS=-fPIC

make

sudo	make	install

At	this	point,	we	have	compiled	and	installed	the	libSRTP	library	that	will	be	used	when
building	and	installing	Asterisk.

Installing	Asterisk
In	this	recipe,	we	will	install	Asterisk	11.5;	perform	the	following	steps	to	do	so:

1.	 Download	Asterisk	from	the	home	page,	http://www.asterisk.org.
2.	 Unpack	the	archive	and	go	into	the	Asterisk	source	code	folder.
3.	 Configure	Asterisk	as	follows:

./configure	--with-crypto	--with-ssl	--with-srtp=/usr/local/lib

contrib/scripts/get_mp3_source.sh

make	menuselect.makeopts

menuselect/menuselect	--enable	format_mp3	--enable	res_config_mysql	--

enable	app_mysql	--enable	app_saycountpl	--enable	cdr_mysql	--enable	

EXTRA-SOUNDS-EN-GSM

Tip
Particular	configuration	options	given	in	the	preceding	code	can	vary	depending	on
your	specific	case.	For	example,	you	might	be	not	using	MySQL	but	some	other
database.	In	newest	versions	of	Asterisk,	app_saycountpl	is	replaced	with
app_saycounted.

4.	 Build	Asterisk	as	follows:

http://sourceforge.net/projects/srtp/files/
http://www.asterisk.org

make

make	install

Now	we	have	compiled	and	installed	Asterisk,	we	can	configure	the	software	with	the
following	steps:

1.	 Edit	/etc/asterisk/sip.conf	and	change	the	General	section:

udpbindaddr=0.0.0.0:5060

realm=<your_server_IP	>

transport=udp,ws

2.	 Edit	/etc/asterisk/rtp.conf	to	enable	STUN	and	ICE:

icesupport=yes

stunaddr=<IP_of_your_STUN_server>

Tip
If	you	didn’t	install	your	own	STUN	server	yet,	you	can	use	the	public	STUN	service
from	Google	at	stun.l.google.com:19302.

3.	 Edit	/etc/asterisk/http.conf	and	enable	an	HTTP	service:

[general]

enabled=yes

bindaddr=0.0.0.0

bindport=8088

4.	 Edit	/etc/asterisk/sip.conf	and	create	a	SIP	account:

[8000]

secret=SuperS3cret

context=from-internal

host=dynamic

trustrpid=yes

sendrpid=no

type=friend

qualify=yes

qualifyfreq=600

transport=udp,ws

encryption=yes

dial=SIP/8000

callerid=John	Dow	<8001>

callcounter=yes

avpf=yes

icesupport=yes

directmedia=no

You	can	find	additional	details	on	Asterisk	configuration	options	at	http://www.voip-
info.org/wiki/.

5.	 Now	that	the	configuration	is	finished,	restart	Asterisk.

http://www.voip-info.org/wiki/

How	it	works…
The	whole	schema	of	interoperation	between	all	the	components	can	be	found	in	the
following	diagram	(taken	from	the	sipML5	library’s	home	page):

As	you	can	see,	HTML5	client	can	interact	with	a	VoIP	platform	using	WebRTC	and	a
SIP	module	(JavaScript	SIP	in	the	diagram).

There’s	more…
There	is	an	opinion	that	Asterisk	is	not	the	best	choice.	It	is	perhaps	the	oldest	and	most
mature	solution	in	the	field.	Nevertheless,	many	people	found	it	buggy	and	unstable	in
some	cases.	In	particular,	WebRTC	was	not	supported	by	many	until	the	previous
versions.

So,	if	you	are	looking	for	alternatives,	it	might	be	a	good	idea	to	try	other	solutions	such
as	FreeSWITCH.	Its	home	page	can	be	found	at	http://www.freeswitch.org.

http://www.freeswitch.org

See	also
For	an	alternative	solution,	using	other	VoIP	software,	refer	to	the	Integrating
WebRTC	with	FreeSWITCH	recipe
In	the	Making	calls	from	a	web	page	recipe,	we	will	cover	how	to	make	calls	from
web	pages	using	WebRTC	and	a	VoIP	platform	integration

Integrating	WebRTC	with	FreeSWITCH
In	this	recipe,	we	will	cover	the	integration	of	WebRTC	with	FreeSWITCH—an	open
source	platform	used	to	make	VoIP	communication	services.

FreeSWITCH	is	a	scalable	open	source	cross-platform	telephony	platform	designed	to
route	and	interconnect	popular	communication	protocols	using	audio,	video,	text,	or	any
other	form	of	media.	It	was	created	in	2006	to	fill	the	void	left	by	proprietary	commercial
solutions.	FreeSWITCH	also	provides	a	stable	telephony	platform	on	which	many
telephony	applications	can	be	developed	using	a	wide	range	of	free	tools.

Getting	ready
In	this	recipe,	we	will	work	under	Linux	as	well.	So,	you	need	a	Linux	box	to	be	prepared.

It	is	possible	to	install	FreeSWITCH	under	Windows,	but	we	don’t	cover	this	use	case	in
the	recipe.	If	you	need	a	Windows	installation,	please	refer	to	the	official	documentation	at
http://wiki.freeswitch.org/wiki/Installation_for_Windows.

During	the	work,	we	will	also	use	tools	such	as	Git	and	SVN—install	them	if	they’re	not
installed	yet	on	your	machine.	I	assume	that	you	have	some	experience	with	installing	and
configuring	Linux	software.

http://wiki.freeswitch.org/wiki/Installation_for_Windows

How	to	do	it…
During	this	recipe,	we	will	install	and	configure	a	set	of	applications	and	build	a	service
by	integrating	these	applications	with	each	other.	We	will	not	cover	all	the	installation	and
configuration	steps	from	scratch,	but	will	only	cover	the	specific	steps	that	might	be
relevant	to	this	recipe.

Installing	FreeSWITCH
FreeSWITCH	can	be	installed	from	precompiled	binary	packages	or	from	source	code.
The	first	way	is	easer,	but	the	vendor	recommends	the	second	one.	We	install
FreeSWITCH	with	the	following	steps:

1.	 Install	the	necessary	packages	for	your	system:

apt-get	install	autoconf	automake	devscripts	gawk	g++	git-core	libjpeg-

dev	libncurses5-dev	libtool	make	python-dev	gawk	pkg-config	libtiff5-

dev	libperl-dev	libgdbm-dev	libdb-dev	gettext	libssl-dev	libcurl4-

openssl-dev	libpcre3-dev	libspeex-dev	libspeexdsp-dev	libsqlite3-dev	

libedit-dev	libldns-dev	libpq-dev

2.	 Go	to	the	/usr/src	folder	and	compile	source	code:

cd	/usr/src

git	clone	https://stash.freeswitch.org/scm/fs/freeswitch.git

cd	/usr/src/freeswitch

./bootstrap.sh	–j

./configure	--enable-core-pgsql-support

make	&&	make	install

Note
In	this	case,	we	will	use	the	master	version.	Note	that	master	versions	are	usually
unstable,	and	for	production	systems,	you	should	use	stable	versions	only.	For	this
information,	refer	to	the	home	page	and	clone	the	relevant	stable	version	at
https://www.freeswitch.org.

3.	 Install	sounds:

make	cd-sounds-install	cd-moh-install

4.	 Set	permissions	and	the	file	owner:

cd	/usr/local

adduser	--disabled-password		--quiet	--system	--home	

/usr/local/freeswitch	--gecos	"FreeSWITCH	Voice	Platform"	--ingroup	

daemon	freeswitch

chown	-R	freeswitch:daemon	/usr/local/freeswitch/

chmod	-R	ug=rwX,o=	/usr/local/freeswitch/

chmod	-R	u=rwx,g=rx	/usr/local/freeswitch/bin/*

Note
For	more	details,	refer	to	https://www.freeswitch.org.

https://www.freeswitch.org
https://www.freeswitch.org

Enabling	WebRTC
FreeSWITCH	supports	WebRTC	from	version	1.4.	WebRTC	can	be	enabled	or	disabled
by	changing	appropriate	options	in	the	configuration	of	FreeSWITCH.	By	default,
configuration	options	that	enable	WebRTC	are	commented	out,	so	WebRTC	is	disabled.
To	enable	WebRTC	in	FreeSWITCH,	you	should	open	sip_profiles/internal.xml
configuration	file	and	edit	appropriate	configuration	options	as	shown:

<!--	uncomment	for	sip	over	websocket	support	-->

<param	name="ws-binding"		value=":5066"/>

<!--	uncomment	for	sip	over	secure	websocket	support	-->

<!--	You	need	wss.pem	in	/usr/local/freeswitch/certs	for	wss	-->

<!--<param	name="wss-binding"	value=":7443"/>-->

You	will	need	to	restart	FreeSWITCH	after	this	change.

Note
You	need	to	use	SSL/TLS	certificates	if	you	want	to	utilize	the	WebSockets	secured	layer
(WSS).

Starting	FreeSWITCH
You	need	to	add	a	new	user	into	FreeSWITCH.	Please	refer	to	the	appropriate	page	on	this
topic	at	https://wiki.freeswitch.org/wiki/XML_User_Directory_Guide.

After	you’ve	made	all	the	configuration	steps,	start	the	FreeSWITCH	by	using	the
following	command:

cd	/usr/local/freeswitch/bin

./freeswitch

Now	we	have	FreeSWITCH	installed	with	enabled	with	the	support	of	WebRTC.

https://wiki.freeswitch.org/wiki/XML_User_Directory_Guide

How	it	works…
It’s	better	to	use	a	diagram	to	describe	the	workflow,	so	have	a	look	at	the	following
diagram:

There’s	more…
FreeSWITCH	is	not	the	only	VoIP	platform	solution	existing	in	the	world.	One	of	the	best-
known	alternatives	is	Asterisk.

Deciding	which	particular	solution	might	fit	your	requirements	is	all	up	to	you.	They	both
have	support	for	WebRTC	since	the	last	versions	(middle	of	2014).	So	they	both	might
contain	some	bugs	or	features	related	to	the	technology.

Asterisk	seems	to	be	older	and	more	mature	than	FreeSWITCH.	There	are	more	hacks	and
there’s	more	documentation	related	to	Asterisk	than	FreeSWITCH.

So	if	you	are	looking	for	alternatives	to	FreeSWITCH,	it	might	be	worth	trying	Asterisk.
Its	home	page	is	http://www.asterisk.org.

http://www.asterisk.org

See	also
For	an	alternative	solution,	using	other	VoIP	software,	refer	to	the	Integrating
WebRTC	with	Asterisk	recipe
In	the	Making	calls	from	a	web	page	recipe,	we	will	cover	how	to	make	calls	from
web	pages	using	WebRTC	and	a	VoIP	platform	integration

Making	calls	from	a	web	page
In	this	recipe,	we	will	cover	the	process	of	making	calls	from	web	pages.	For	this	task,
you	will	need	to	run	a	VoIP	service.	It	can	be	your	own	Asterisk	or	FreeSWITCH
installation,	or	it	can	be	some	external,	cloud,	or	SaaS	VoIP	solution.

To	achieve	our	goal,	we	will	use	an	HTML5	SIP	library	to	make	calls	from	a	web	page	to
a	phone	number	and	vice	versa.

Getting	ready
In	this	recipe,	we	will	work	under	Linux,	so	prepare	a	Linux	box.	We	will	also	use	tools
such	as	Git	and	SVN—install	them	if	they’re	not	installed	yet	on	your	machine.

You	will	need	a	web	server	installed.	It	might	be	Nginx,	Apache	HTTP	Server,	or	any
other	web	server	you	like	the	most.	I	assume	that	you	have	some	experience	of	installing
and	configuring	Linux	software.

How	to	do	it…
During	this	recipe	we	will	install	and	configure	a	set	of	applications	and	build	a	service	by
integrating	these	applications	with	each	other.	We	will	not	cover	all	the	installation	and
configuration	steps	from	scratch,	but	will	only	cover	specific	steps	that	might	be	relevant
to	this	recipe.

Installing	sipML5
The	first	HTML5	SIP	client	is	sipML5.	We	will	use	this	library	in	this	recipe	to	achieve
our	goal.

1.	 Go	into	your	default	www	folder	of	the	web	server.	It	might	vary	on	different	systems.
For	Ubuntu	it	can	be	/usr/local/www.

2.	 Download	the	sipML5	source	code:

svn	checkout	http://sipml5.googlecode.com/svn/trunk/

3.	 Give	Asterisk	access	rights	to	downloaded	the	project:

chown	-R	asterisk:asterisk	/usr/local/www/trunk/

4.	 Open	the	Chrome	web	browser	and	navigate	to	http://<your_IP>/trunk/call.htm.

Here,	your_IP	is	the	IP	address	of	your	machine	where	sipML5	has	been	installed.

5.	 Go	to	Expert	Mode	and	set	the	options	as	depicted	in	the	following	screenshot:

Put	your	actual	machine’s	IP	address	instead	of	your_IP.

Tip
If	you	have	your	own	STUN	server	installed,	you	can	specify	its	IP	or	name	at	the
ICE	Servers	option.

6.	 Save	the	changes.
7.	 Now	get	back	to	the	first	tab	and	fill	in	the	fields	as	depicted	in	the	following

screenshot:

Note	that	you	should	out	your	machine’s	actual	IP	address	(where	Asterisk	and	sipML5
are	installed)	instead	of	the	your_IP	word.

Tip
Use	the	same	password	you	configured	for	Asterisk	(SuperS3cret	in	this	recipe).

Now	click	on	Login—you	should	see	a	Connected	status	line	at	the	top	of	the
Registration	box.

Now	you	can	try	to	make	an	outgoing	call	using	the	Call	control—call	on	any	number	that
is	served	by	the	VoIP	platform	(Asterisk	or	FreeSWITCH)	and	is	registered	in	the	system.
Incoming	calls	should	work	as	well;	you	can	check	them	using	any	SIP	softphone	client.
Here	are	a	few	of	them:

Bria:	For	more	information,	go	to	http://www.counterpath.com/bria

Telephone:	To	know	more	about	Telephone,	refer	to	https://github.com/eofster/Telephone

http://www.counterpath.com/bria
https://github.com/eofster/Telephone

Zoiper:	For	more	details,	refer	to	http://www.zoiper.com/en

Express	Talk:	Refer	to	http://www.nch.com.au/talk/	for	more	information

3CXPhone:	For	more	information,	go	to	http://www.3cx.com/voip/softphone/

X-Lite:	To	know	more	about	X-Lite,	refer	to	http://www.counterpath.com/x-lite

http://www.zoiper.com/en
http://www.nch.com.au/talk/
http://www.3cx.com/voip/softphone/
http://www.counterpath.com/x-lite

How	it	works…
The	working	flow	of	this	constructed	software	system	might	be	looking	relatively
complex	for	someone	who	is	not	building	such	systems	every	day.	Although,	the	working
flow	of	the	integrated	system	is	not	that	complex:

HTML5	SIP	client	(sipML5	in	our	case)	is	just	a	VoIP	softphone	implemented	to	run
in	the	browser.
The	in-browser	softphone	uses	WebRTC	technology	to	get	access	to	the	computer’s
multimedia	(camera	and	microphone).
Then	using	WebRTC,	SIP	protocol,	and	WebSockets,	the	in-browser	softphone
establishes	communication	with	the	VoIP	platform	(Asterisk	or	FreeSWITCH	for
example).	Then,	the	softphone	registers	in	the	system.	After	that,	the	softphone
becomes	available	to	the	user	to	make	calls.
Thus,	the	in-browser	softphone	becomes	able	to	make	phone	calls	to	other	endpoints
of	the	VoIP	platform.	If	the	VoIP	platform	has	a	gate	to	an	external	phone	network,
you	can	even	make	external	phone	calls	using	just	the	in-browser	softphone.

There’s	more…
The	sipML5	library	is	not	the	only	solution	that	can	be	used	for	this	task.	There	are	several
alternative	software	pieces	that	can	be	used	in	this	scope	as	well.	Here	are	two	examples
of	them:

SIP.js:	For	more	information,	refer	to	http://sipjs.com/

JsSIP:	Refer	to	http://jssip.net/	for	more	information

Each	library	has	its	own	pros	and	cons	and	can	be	suitable	for	your	particular	expectations
and	requirements.	The	common	integration	schema	remains	the	same,	so	you	can	try
different	software	and	decide	which	one	is	best	for	you.

http://sipjs.com/
http://jssip.net/

See	also
You	will	need	a	VoIP	platform	(SIP	server)	installed	to	make	calls	from	a	web	page.	You
can	use	an	existing	external	server	or	you	can	install	your	own.	To	install	your	own	VoIP
platform,	please	refer	to	the	following	recipes:

Refer	to	the	Integrating	WebRTC	with	Asterisk	recipe	to	learn	how	to	integrate
WebRTC	with	Asterisk
Refer	to	the	Integrating	WebRTC	with	FreeSWITCH	recipe	to	learn	how	to	integrate
WebRTC	with	different	VoIP	solutions	such	as	FreeSWITCH

Tip
It	would	probably	be	good	idea	to	use	an	external	or	cloud	VoIP	platform	for	such
purposes	in	production.	Maintaining	a	good,	working,	and	scalable	VoIP	platform	cannot
be	easy.

Integration	of	WebRTC	with	web	cameras
In	this	recipe,	we	will	discuss	how	to	integrate	WebRTC	with	web	cameras.	Why	might
someone	want	to	integrate	a	web	camera	with	WebRTC	technology?	Here	are	some
reasons	why	they	might	do	this:

A	web	camera	needs	a	Java	or	ActiveX	enabled	on	the	client	for	it	to	be	able	see	the
image	from	the	camera.	Many	computers	have	Java	installed;	nevertheless	in	some
cases,	it	might	be	impossible	to	install/use	Java	or	ActiveX.	Regarding	ActiveX,	this
technology	is	supported	even	on	fewer	devices	than	Java.	WebRTC	can	become	a
universal	and	lightweight	way	to	show	multimedia	from	a	webcam	and	that	doesn’t
need	you	to	install	any	additional	software.
As	of	now,	WebRTC	is	fully	supported	on	Android	devices	(mostly	the	ones	that	use
Chrome	mobile),	but	in	the	near	future,	it	is	supposed	to	be	supported	on	other
mobile	platforms	as	well	(such	as	iOS	and	Windows	Mobile).	At	this	time,	you
usually	have	to	install	JVM	or	FlashPlayer	in	your	mobile	if	you	want	to	see	a	video
from	a	webcam.	Often,	it	is	barely	possible	at	all.
Webcams	usually	are	very	resource	limited	devices.	When	several	clients	access	the
camera	at	one	time,	it	can	show	time	delays	and	can	even	get	stuck.	Such	an	issue	can
be	solved	very	effectively	by	using	of	a	WebRTC	application	that	is	integrated	into
the	connection	between	the	user	and	the	camera.

Here	we	cover	possible	solution	for	such	a	task:	capturing	a	video	from	a	webcam,
transcoding	it	into	WebRTC	flow,	and	displaying	it	in	the	web	browser.

Getting	ready
There	are	many	ways	in	which	webcams	give	out	videos.	Usually,	it	can	be	a	set	of	JPEG
images	or	RTSP	flow.	In	our	experiments,	we	will	cover	the	second	case	and	will	use	a	D-
Link	DCS-5220	web	camera.

So	for	this	recipe,	you	need	a	webcam	that	can	do	RTSP.	In	my	case,	it	is	D-Link	but	you
can	use	any	other	webcam—	the	recipe	will	still	be	relevant,	but	some	minor	changes
might	be	necessary.	Install	and	configure	the	webcam	and	connect	it	to	the	network.

In	this	recipe,	we	will	also	install	and	configure	the	WebRTC	media	server—this	software
is	written	in	Java,	so	you	need	JVM	installed	in	your	box.	One	more	thing	that	you	will
need	to	do	is	install	a	web	server.	You	can	use	Nginx,	Apache	HTTP	Server,	or	any	other
web	server	of	your	choice.

How	to	do	it…
We	will	configure	the	webcam.	Then	we	will	install	and	configure	the	WebRTC	media
server,	and	then	we	will	connect	all	the	components	in	the	whole	system.

Configuring	the	webcam
First	of	all,	we	will	do	some	minor	configurations	with	the	web	camera.	To	do	so,	perform
the	following	steps:

1.	 Navigate	to	the	webcam’s	admin	page	and	open	the	NETWORK	SETUP	menu.	We
need	to	go	to	the	RTSP	section:

In	this	section,	we	need	to	look	for	the	RTSP	port	parameter—it	should	be	554	by
default.	It	is	also	worth	to	set	the	RTSP	Authentication	field	to	the	Disable	state—
for	the	time	being	we’re	working	on	the	task.

Check	whether	the	webcam	works	as	expected.	For	this,	you	can	use	VLC	media	player—
just	open	rtsp://cam_IP/live1.sdp	in	the	player.

Tip
Note	that	you	need	to	insert	the	relevant	IP	address	of	the	web	camera	instead	of	cam_IP.
If	the	camera	is	configured	the	correct	way,	you	will	see	a	video	captured	from	it.

Installing	WebRTC	media	server
As	we	know	already,	our	web	camera	streams	media	over	RTSP,	but	we	want	to	watch	that
stream	in	a	web	browser	using	WebRTC.	So	you	have	to	convert	the	media	from	RTSP	to
the	WebRTC	form.	For	this	purpose,	we	will	use	the	WebRTC	media	server	from
Flashphoner.

This	software	can	capture	media	from	RTSP	streamer,	re-encode	it,	and	stream	it	in
WebRTC:

1.	 Download	the	media	server	from	its	home	page	at
http://flashphoner.com/download_webrtcserver/.

http://flashphoner.com/download_webrtcserver/

2.	 Unpack	the	archive:

tar	-xvzf	FlashphonerMediaServerWebRTC.tar.gz

3.	 Install	the	server:

cd	FlashphonerMediaServerWebRTC

./install.sh

Tip
During	the	installation,	you	will	be	asked	on	the	public	and	private	servers’	IPs.	If
you’re	experimenting	on	your	local	machine,	both	the	IPs	might	be	identical.

4.	 Start	the	media	server:

service	webcallserver	start

5.	 Check	whether	that	server	is	running:

ps	-ax	|	grep	Flashphoner

Tip
You	also	can	look	into	your	media	server’s	log	files	to	check	whether	everything	is
all	right:
/usr/local/FlashphonerWebCallServer/logs/server_logs/flashphoner.log.

6.	 Go	to	your	web	server’s	www	folder—in	my	case	it	is	/usr/local/www:

cd	/usr/local/www

7.	 Download	the	web	UI	files	into	the	folder:

wget	

https://github.com/flashphoner/flashphoner_client/archive/wcs_media_cli

ent.zip

Clients	will	access	this	UI	via	the	web	server	in	order	to	see	the	captured	media
streams	from	the	web	camera.	In	other	words,	this	is	the	UI	for	the	media	server.

8.	 Unpack	the	archive:

unzip	wcs_media_client.zip

9.	 There	are	several	nested	empty	folders	in	the	archive,	so	it	is	worthwhile	moving	the
necessary	files	to	the	upper	level	and	making	life	a	bit	easier	with	the	following
commands:

mv	flashphoner_client-wcs_media_client/client/wcs_media_client	./

rm	-rf	flashphoner_client-wcs_media_client/

10.	 Edit	this	wcs_media_client/flashphoner.xml	configuration	file	and	set	the	proper
IP	address	of	the	WebRTC	media	server:

<flashphoner>

				<wcs_server>188.226.144.63</wcs_server>

				<ws_port>8080</ws_port>

				<video_width>1280</video_width>

				<video_height>720</video_height>

</flashphoner>

The	media	server	is	now	installed	and	properly	configured!

Time	for	magic
Now	when	everything	is	configured	and	running,	it	is	time	to	do	the	magic.	From	your
web	browser,	go	to	http://<server_IP>/wcs_media_client/?
id=rtsp://<cam_IP>/live1.sdp.

The	following	parameters	are	mentioned	in	the	preceding	URL:

<server_IP>:	This	is	the	IP	address	of	the	machine	where	the	WebRTC	media	server
with	its	UI	is	installed
<cam_IP>:	This	is	the	IP	address	of	the	web	camera

While	navigating	to	the	URL,	you	will	first	see	an	image	from	the	media	server,	as	shown
in	the	following	screenshot:

At	this	stage,	the	WebRTC	media	server	will	try	to	connect	to	the	camera	and	negotiate
with	it	regarding	the	stream	capturing.	It	can	take	several	seconds.	When	the

communication	process	is	done,	the	server	begins	capturing	the	media	stream	from	the
camera	and	encoding	it	into	the	WebRTC	format.	After	that,	you	will	see	the	image	from
the	camera.

How	it	works…
The	following	diagram	depicts	the	general	schema	of	what	we	built	in	this	solution:

As	you	can	see,	the	WebRTC	media	server	captures	the	stream	from	the	web	camera	and
then	the	clients	can	see	the	captured	stream	in	their	web	browsers	using	WebRTC.	What	is
important	here,	is	that	clients	are	not	connected	to	the	webcam	and	they	don’t	get	media
streamed	from	the	webcam	directly;	instead,	clients	are	connected	to	the	WebRTC	media
server,	and	they	get	all	media	streams	from	the	media	server.

In	the	following	diagram,	you	can	see	the	workflow	of	how	it	works,	step	by	step:

There’s	more…
You	might	want	to	take	a	look	at	another	solution—janus-gateway.	For	more	information
refer	to	https://github.com/meetecho/janus-gateway.

This	solution	is	open	source	(while	the	server	from	Flashphoner	is	not).	At	the	time	of
writing	this,	it	works	under	Linux	only,	but	its	authors	claim	cross-platform	support	in	the
future.

Another	popular	media	server,	Wowza,	can	also	capture	the	RTSP	stream	from	cameras,
but	its	main	purpose	to	re-encode	media	data	into	Flash,	so	for	WebRTC,	this	solution	is
hardly	suitable.	Nevertheless,	Wowza	can	be	an	interesting	solution	as	well,	for	example,
if	you	need	your	application	to	support	Flash	technology	along	with	WebRTC.	This
software	can	be	found	at	http://www.wowza.com.

Many	cameras	stream	to	Motion	JPEG,	and	this	recipe	is	irrelevant	for	such	devices.
Nevertheless,	it	is	possible	to	build	a	similar	solution	for	them	as	well,	using	similar
schema.

https://github.com/meetecho/janus-gateway
http://www.wowza.com

Chapter	4.	Debugging	a	WebRTC
Application
In	this	chapter,	we	will	cover	the	following	topics:

Working	with	a	WebRTC	statistics	API
Debugging	with	Chrome
Debugging	TURN
Debugging	using	Wireshark

Introduction
Debugging	is	a	very	important	aspect	in	developing	a	computer	software.	Even	if	you	are
an	experienced	developer	and	write	very	clean	and	professional	code,	you	might	face
some	situations	when	the	only	good	way	to	understand	what’s	going	wrong	is	debugging
and	profiling.

In	this	chapter,	we	will	cover	debugging	within	the	scope	of	developing	WebRTC
applications.	We	will	talk	about	specific	useful	tools	built	in	Chrome	web	browser,	which
can	be	helpful.	Also,	we	will	cover	basic	questions	of	debugging	JavaScript	applications
in	the	scope	of	the	main	topic.	Of	course,	we	will	cover	the	server	side	as	well.

WebRTC	has	a	very	useful	API	known	as	statistics	API;	it	can	be	used	for	monitoring	and
debugging	WebRTC	applications.	We	will	cover	this	topic	in	the	appropriate	recipe,
considering	real-world	use	cases	and	practical	possible	solutions.

A	WebRTC	application	usually	works	very	intensively	with	network.	Therefore,	we	will
learn	how	to	use	Wireshark	(a	network	sniffer)	for	debugging	purposes	in	the	scope	of
developing	WebRTC	applications	and	services.

Working	with	a	WebRTC	statistics	API
WebRTC’s	standard	describes	statistics	API—a	mechanism	that	an	application	can	use	for
getting	many	kinds	of	statistical	data.	Using	this	mechanism	can	be	helpful	when
debugging	applications,	because	you	can	get	access	to	some	hidden	data	that	is	not	visible
to	the	application	or	to	a	customer	in	any	other	way.

Using	this	part	of	API	you	can	better	understand	what	is	going	on	under	the	hood	of	the
web	browser	and	your	application.	It	is	very	useful	if	you	are	a	beginner	and	would	like	to
know	more	on	how	all	this	works.	It	is	also	helpful	if	you’re	an	experienced	developer	and
are	creating	some	advanced	feature	in	the	application.

Getting	ready
For	this	recipe,	we	will	not	do	much	configuration	work.	We	will	not	install	any	libraries
or	compile	Linux	software	like	we	do	in	some	other	recipes.	This	recipe	is	dedicated	to
debugging	and	most	of	the	topic	is	dedicated	to	client	side.	Therefore,	most	of	the	material
is	about	JavaScript,	the	web	browser	and	browser’s	console.

I	would	recommend	you	use	Chrome	for	this	recipe,	because	this	browser	still	seems	to	be
more	stable	in	the	scope	of	supporting	WebRTC.	Moreover,	usually	Chrome	has	better	and
more	advanced	support	for	this	technology.

How	to	do	it…
For	accessing	the	statistics	data,	you	should	use	the	getStats	API	function	(a	method	of
PeerConnection	instances).	While	calling	this	function,	you	have	to	pass	the	selector.	In
reply,	the	browser	will	return	relevant	statistical	data.

Since	WebRTC	is	still	under	development,	the	API	functions	might	still	have	different
names	in	the	supported	web	browsers.	To	solve	this	issue,	it	is	worthwhile	to	write
additional	code	that	could	serve	as	a	wrapper	and	universal	API	to	the	function.	The
following	code	can	be	used	as	a	simple	example	of	such	behavior:

function	myGetStats(peer,	callback)	{

				if	(!!navigator.mozGetUserMedia)	{

								peer.getStats(

												function	(res)	{

																var	items	=	[];

																res.forEach(function	(result)	{

																				items.push(result);

																});

																callback(items);

												},

												callback

);

				}	else	{

								peer.getStats(function	(res)	{

												var	items	=	[];

												res.result().forEach(function	(result)	{

																var	item	=	{};

																result.names().forEach(function	(name)	{

																				item[name]	=	result.stat(name);

																});

																item.id	=	result.id;

																item.type	=	result.type;

																item.timestamp	=	result.timestamp;

																items.push(item);

																items.push(item);

												});

												callback(items);

								});

				}

};

Now	let’s	write	a	function	that	we	will	call	from	the	application	to	get	the	statistics.	This
function	will	print	statistical	data	to	the	browser’s	console	every	5	seconds:

function	printStats(peer)	{

				myGetStats(peer,	function	(results)	{

								for	(var	i	=	0;	i	<	results.length;	++i)	{

											console.log(results[i]);

								}

								setTimeout(function	()	{

												printStats(peer);

								},	5000);

				});

}

Next,	we	should	put	the	function	call	in	the	proper	place	in	the	application.	Somewhere	in
your	application,	you	should	create	a	peer	connection	object	using	a	construction	similar
to	the	following:

pc	=	new	RTCPeerConnection(pc_config,	pc_constraints);

After	that,	you	should	set	up	the	onaddstream	callback	of	the	created	object:

pc.onaddstream	=	onRemoteStreamAdded;

Here,	onRemoteStreamAdded	is	a	callback	function	that	is	called	once	when	peer
connection	is	established.	In	the	following	callback	function,	you	should	add	some	code
that	calls	the	printStats	function,	which	we	have	just	written	in	the	preceding	code:

var	onRemoteStreamAdded	=	function(event)	{

								clog("Remote	stream	added.");

								attachMediaStream(remoteVideo,	event.stream);

								remoteStream	=	event.stream;

								printStats(pc);

};

I	have	provided	the	full	list	of	the	functions	here	to	show	the	big	picture	and	make	it	clear.
You	can	see	in	the	following	screenshot	that	after	the	media	stream	is	attached	to	the
proper	video	HTML	tag,	we	call	printStats	so	that	it	prints	the	statistical	data	to	the
console	every	5	seconds:

Here	you	can	see	a	screenshot	of	an	example	web	page	that	uses	the	described	printStats
function.	The	web	browser	console	is	opened,	and	you	can	see	the	statistical	data	printed
there.	The	statistical	data	looks	incomprehensible,	but	the	following	screenshots	will	give
you	more	details,	making	it	clearer.

The	following	screenshot	depicts	a	part	of	the	browser’s	console	with	one	of	the	expanded
statistic	data	objects.	In	the	screenshot,	you	can	see	the	Object	structure,	and	according	to
its	options	it	is	an	audio	track:	its	input	level	is	131,	its	used	codec	is	Opus,	and	there	were
around	300	kilobytes	sent	through	this	channel.	You	can	also	see	other	useful	information
regarding	this	object,	such	as	echo	cancellation	feature	details.

Another	screenshot	presents	one	more	expanded	statistic	object.	In	the	following
screenshot,	you	can	see	that	we	deal	with	video	data,	we	have	a	delay	of	33	milliseconds,
and	the	frame	size	is	640	x	480.	More	service	information	is	present	in	the	following
screenshot:

Let’s	see	one	more	example	screenshot.	In	the	following	screenshot,	we	can	see	that	the

used	video	codec	is	VP8,	the	video	frame	size	is	640	x	480,	and	around	13	megabytes	of
video	data	have	been	sent	through	this	media	channel:

The	getStats	WebRTC	API	function	can	be	very	useful	not	only	for	debugging	purposes.
This	function	can	be	helpful	for	many	use	cases,	for	example:

Monitoring:	In	this	use	case,	if	you	have	your	web	service	running,	you	probably
want	to	monitor	its	state	dynamically,	to	know	how	well	the	resources	are	utilized
and	so	on
Tests:	For	this	use	case,	if	you’re	working	on	some	feature	or	just	implementing
some	new	functionality	in	your	application,	statistics	API	can	be	helpful	with	A/B
testing
Troubleshooting:	In	this	use	case,	if	your	application	doesn’t	work	by	some	reason
for	a	customer,	you	can	use	this	mechanism	to	track	the	issue	and	find	the	root	cause

Checking	estimated	bandwidth
We	just	considered	a	common	case	of	using	WebRTC	statistics	API.	Now	we	will	consider
a	practical	example	of	using	this	mechanism.	In	particular,	we	will	try	to	know	our
estimated	bandwidth	for	the	video	channel	used	in	our	application.

The	following	function	collects	statistical	data	related	to	the	bandwidth	utilization	and
prints	a	simple	report	on	the	console:

function	printStats(peer)	{

The	myGetStats	function	is	described	as	follows	and	can	be	found	in	the	How	to	do	it…
section	of	this	recipe:

				myGetStats(peer,	function	(results)	{

								for	(var	i	=	0;	i	<	results.length;	++i)	{

												var	res	=	results[i];

Check	if	we	have	a	video	object:

												if	(res.googCodecName	==	'VP8')	{

																if	(!window.prevBytesSent)	window.prevBytesSent	=	

res.bytesSent;

Get	the	bytesSent	value	as	follows:

																var	bytes	=	res.bytesSent	-	window.prevBytesSent;

																window.prevBytesSent	=	res.bytesSent;

Now	convert	the	value	into	kilobytes:

																var	kilobytes	=	bytes	/	1024;

																console.log(kilobytes.toFixed(1)	+	'	kilobytes	per	

second');

												}

								}

								setTimeout(function	()	{

												printStats(peer);

								},	1000);

				});

}

We	have	set	the	timeout	value	to	1,000	milliseconds.	Thus	every	second	this	function	gets
statistics	using	WebRTC	API,	extracts	the	sent	bytes	value	from	the	appropriate	object,
and	calculates	the	bitrate.	The	following	screenshot	depicts	what	you	should	see	in	the
browser’s	console:

The	following	section	represents	one	more	use	case	that	you	might	face	while	developing
an	application	or	a	service	using	WebRTC	features.

Checking	packet	loss
In	this	section,	we	will	consider	another	use	case:	checking	packet	loss.	This	is	an	example
taken	from	the	WebRTC	standard	draft,	a	bit	adapted	to	our	code	base.	In	the	scenario,	the
user	is	experiencing	bad	sound,	and	the	application	wants	to	determine	whether	packet
loss	causes	this	issue	with	the	following	steps:

1.	 First	of	all,	let’s	declare	the	variables	where	we	will	store	baseline	values	and	current
value:

var	baselineReport,	currentReport;

2.	 Next,	write	initialization	function—it	will	make	first	call	to	statistics	API	and	store
the	first	value	as	baseline:

function	initStats	(peer)	{

			myGetStats(peer,	function	(report)	{

						baselineReport	=	report;

			});

3.	 Now,	using	timer,	we	will	get	statistics	every	one	second	and	process	it:

			setTimeout(function	()	{

					myGetStats(peer,	function	(report)	{

								currentReport	=	report;

								processStats();

			});

},	1000);	}

4.	 The	following	function	does	all	the	processing	work:

function	processStats()	{

				//	compare	the	elements	from	the	current	report	with	the	baseline

				for	each	(var	now	in	currentReport)	{

								if	(now.type	!=	"outbund-rtp")	continue;

								//	get	the	corresponding	stats	from	the	baseline	report

								base	=	baselineReport[now.id];

								if	(base)	{

												remoteNow	=	currentReport[now.remoteId];

												remoteBase	=	baselineReport[base.remoteId];

												var	packetsSent	=	now.packetsSent	-	base.packetsSent;

												var	packetsReceived	=	remoteNow.packetsReceived	-	

remoteBase.packetsReceived;

												//	if	fractionLost	is	>	0.3,	we	have	probably	found	the	

culprit

												var	fractionLost	=	(packetsSent	-	packetsReceived)	/	

packetsSent;

												if	(fractionLost	>	0.3)	{	console.log("fractionLost	is	too	

big:	"	+	fractionLost);	}

								}

				}

}

5.	 Now,	the	following	code	represents	how	all	that	we	just	have	written	can	be	used	in
the	application:

var	onRemoteStreamAdded	=	function(event)	{

								clog("Remote	stream	added.");

								attachMediaStream(remoteVideo,	event.stream);

								remoteStream	=	event.stream;

								initStats(pc);

};

Here,	we	will	call	the	iniStats	function.	This	function	will	get	the	first	data	from	the
statistics	API;	store	it	in	the	memory,	and	set	up	a	time	for	one	second.	Then,	every	second
another	function	will	be	called—it	will	get	the	next	statistics	sample	and	do	calculations
trying	to	determine	if	something	is	wrong	with	the	packet	loss	value.

How	it	works…
The	web	browser	collects	and	maintains	a	set	of	statistic	data	that	can	be	accessed	via
WebRTC	API.	When	accessing	this	data,	you	should	use	a	selector—something	that
determines	the	kind	of	data	you	want	to	retrieve.

The	selector	might,	for	example,	be	a	MediaStreamTrack	object.	In	this	case,	the	valid
selector	must	be	a	member	of	a	MediaStream	object	that	is	sent	or	received	by	the
PeerConnection	object,	for	which	statistics	is	requested.

Note
Using	the	selector	and	calling	the	getStats	function,	you	will	get	statistics	data	packed	in
a	JavaScript	object.	Then	you	need	to	parse	it	and	get	the	necessary	value.	Most	WebRTC
API	functions	allow	you	to	set	up	an	error	function	callback.	This	function	will	be	called	if
something	goes	wrong;	usually	such	callback	functions	serve	to	print	error	messages	in	a
console.	Using	these	error	callbacks	is	mandatory.	Even	if	you	don’t	pass	the	error
callback	and	everything	works	well,	the	situation	might	change	with	the	next	browser
update,	and	your	application	will	throw	an	exception.	Therefore	don’t	miss	the	error
callbacks!

There’s	more…
For	more	details,	refer	to	WebRTC	standard	draft	at
http://dev.w3.org/2011/webrtc/editor/webrtc.html,	where	you	can	find	more	information
regarding	this	part	of	API.	The	standard	is	in	the	draft	stage	yet,	so	some	(or	many)
concepts	might	be	changed.

http://dev.w3.org/2011/webrtc/editor/webrtc.html

See	also
Take	a	look	at	the	Debugging	with	Chrome	recipe.	Chrome	has	a	set	of	built-in
WebRTC-related	tools	that	might	be	helpful	when	developing	and	debugging
WebRTC	applications.

Debugging	with	Chrome
Chrome	is	a	web	browser	developed	by	Google—the	company	that	invests	in	WebRTC
development	very	intensively.	Chrome	usually	has	the	most	advanced	support	of	WebRTC
features	than	other	browsers,	and	new	and	experimental	features	usually	appear	first	in
Chrome.

Thus,	it	is	not	surprising	that	Chrome	has	good	tools	for	debugging	the	WebRTC	stack.
Some	of	the	relevant	details	will	be	covered	in	this	recipe.

Getting	ready
For	this	recipe,	you	will	need	Chrome	installed.	It	is	a	multiplatform,	so	you	can	download
the	relevant	installation	pack	from	its	home	page	at
https://www.google.com/chrome/browser/.

https://www.google.com/chrome/browser/

How	to	do	it…
There	are	two	known	Chrome	mechanisms	that	can	be	useful	for	debugging	WebRTC
applications:

WebRTC-internals
Logging

In	most	cases,	you	probably	will	use	the	first	one.

Using	webrtc-internals
WebRTC-internals	is	a	built-in	mechanism	in	Chrome	with	the	use	of	which	you	can	get
access	to	a	variety	of	WebRTC	stack-related	information	and	statistics	data.

Open	a	Chrome	web	browser	and	go	to	the	URL	chrome://webrtc-internals/.

If	you	haven’t	opened	any	WebRTC	application	yet,	you	will	not	see	anything	interesting.
Now	in	the	new	tab,	open	a	web	page	of	a	web	application	where	a	WebRTC	API	is
utilized,	and	refresh	the	page	that	has	opened	web-internals.	You	will	see	something
similar	to	what	is	depicted	in	the	following	screenshot:

Here	you	can	see	the	screenshot	of	a	real	application;	its	URL	is	present	at	the	top	of	the
window.	In	the	brackets,	you	can	see	the	list	of	STUN/TURN	servers	that	the	web	browser

http://chrome://webrtc-internals/

uses	for	establishing	peer-to-peer	connection.	There,	also	shown	are	the	optional
parameters	that	are	specified	while	creating	that	peer	connection,	for	example,	the
DtlsSrtpKeyAgreement	option.

Below	the	list	there	are	several	lines	with	horizontal	arrows	that	can	be	expanded,	and
there	you	will	find	additional	details	regarding	the	application	and	WebRTC	stack.	There
is	not	much	information	that	can	be	displayed	because	at	this	stage	the	direct	peer-to-peer
connection	is	not	established	yet.

The	following	screenshot	depicts	the	next	stage	right	after	establishing	the	peer-to-peer
connection:

Here	you	can	see	more	lines;	each	of	them	represents	data	related	to	some	object	or	event.
The	following	screenshot	shows	an	example	of	what	kind	of	data	you	can	find	while
expanding	these	lines:

You	can	see	that	I’ve	expanded	the	setRemoteDescription	list	item,	and	there	are	details
that	have	appeared	for	this	object:	this	is	an	SDP	message	of	the	type	offer.	You	can	also
see	relevant	information	about	the	candidates,	codecs,	and	IP	addresses	of	this	item.

In	the	next	screenshot,	you	can	find	even	more	examples	of	different	kinds	of	items	that
can	be	accessible	via	this	page:

Now	here	are	the	audio	and	video	connection	objects	available	and	many	other	service
items	that	are	not	obvious.	Let’s	see	what	is	under	the	audio	connection	item	in	the
following	screenshot:

Here	we	expanded	the	Conn-audio	object	that	represents	the	audio	connection.	You	can
see	the	bytes	that	were	sent	and	received,	IP	addresses	of	peers	(I	was	running	this
example	on	my	notebook	locally,	so	both	IP	addresses	are	identical),	transport	protocol
type,	and	other	options.

You	will	see	the	same	kind	of	information	while	expanding	the	video	connection	item,	so	I
will	skip	the	screenshot	for	this	one.	Instead	of	that,	let’s	see	what	is	on	bweforvideo:

This	item	represents	the	bandwidth-related	details.	Here	you	can	find	the	bitrate	and
bandwidth	utilized	by	the	web	browser	during	the	communication.

In	the	following	screenshot,	you	can	find	another	example	related	to	video	data:

What	is	good	with	this	tool	is	that	it	gives	not	only	numbers	and	raw	data,	but	it	also
presents	great-looking	graphics,	where	you	can	visually	see	what	is	happening.	In	the
following	screenshot,	you	can	see	the	graphs	related	to	audio	and	video	channels
utilization:

Now	let’s	take	a	look	at	another	graphic	representation—bweforvideo.	It	represents
various	network	connection	parameters	related	to	the	video	channel.	On	the	left-hand	side,
you	can	find	options	through	which	you	can	enable	or	disable	the	parameters	that	you
want	or	don’t	want	to	see	in	the	graphic	representation.

There	are	more	graphic	representations	available—every	graphic	represents	a	dynamical
change	in	some	parameter.

Using	Chrome	logging	mechanism
This	is	not	something	specific	to	WebRTC,	but	can	be	helpful	while	developing	and
debugging	WebRTC	applications.	Chrome	can	be	started	with	enabling	the	logging	for
certain	modules.	In	this	case,	Chrome	during	its	work	will	print	a	variety	of	useful	details
into	log	files.

The	following	command	starts	Chrome	with	enabled	logging:

chrome	--enable-logging	--v=4	--vmodule=*libjingle/source/talk/*=4	--

vmodule=*media/audio/*=4

Now,	Chrome	will	put	additional	details	into	the	chrome_debug.log	file	that	can	be	found
in	Chrome’s	user	data	folder.	The	log	file	is	a	plain	text	file,	so	you	can	read	it	without
using	special	tools.

Tip
On	some	systems,	this	log	file	might	be	directly	written	into	the	terminal.

Although	we	are	working	on	the	log	file	under	Windows,	you	can	use	convenient	tools
such	as	Sawbuck.	You	can	find	its	home	page	at	https://code.google.com/p/sawbuck/.

https://code.google.com/p/sawbuck/

Sawbuck	is	a	log	files	viewer	that	can	be	used	not	only	for	Chrome	logs,	but	also	for
working	with	logs	of	other	applications	(using	plugins).	You	can	see	what	this	tool	looks
like	in	the	following	screenshot	(taken	from	the	tool’s	home	page):

How	it	works…
We	learned	the	built-in	mechanism	available	in	Chrome	that	can	help	debugging	and
profiling	while	developing	WebRTC	applications.	Chrome	collects	useful	data,	and	using
logging	and	the	webrtc-internals	tool,	you	can	access	these	data.	Moreover,	by	accessing
graphs,	you	can	analyze	the	process	in	a	dynamic	manner.

To	use	this	tool,	you	don’t	need	to	install	any	additional	software.	This	makes	it
irreplaceable	in	the	application	development	process.

There’s	more…
You	can	find	more	details	specific	to	Chrome	by	logging	on	the	appropriate	web	page	of
the	Chromium	project	at	http://www.chromium.org/for-testers/enable-logging.

http://www.chromium.org/for-testers/enable-logging

See	also
For	server-side	debugging	advices,	please	refer	to	the	Debugging	TURN	recipe

Debugging	TURN
As	you	probably	know,	your	application	will	definitely	use	STUN	if	you	want	it	to	work
in	the	real	world.	Using	STUN	will	be	enough	for	most	cases,	although	you	will	have	to
use	TURN	in	many	situations—especially	when	working	with	enterprise	customers,
because	they	usually	have	very	strict	network	firewall	policies	and	complex	network
configurations.	Using	TURN	can	be	the	only	available	solution	for	customers	located	in
some	places,	for	example,	some	countries	might	have	specific	network	access	limitations
that	cause	issues	for	network	applications	that	are	WebRTC-based.

So	in	this	recipe,	we	will	cover	how	to	debug	TURN.

Getting	ready
For	this	recipe,	you	need	to	have	your	own	TURN	server	installed	and	running.	When	you
use	a	TURN	server	as	a	third-party	service,	you	can	debug	only	client	side.	However,	if
you	use	your	own	TURN	server,	you	have	access	to	it	and	can	do	more	in	the	scope	of
debugging.	So	in	this	recipe,	we	will	consider	debugging	a	TURN	server	that	you	have
direct	access	to.

How	to	do	it…
In	Chapter	3,	Integrating	WebRTC,	we	considered	the	installation	and	configuration	of	our
own	TURN	server.	To	debug	TURN,	set	the	verbosity	level	to	maximum	and	run	the
TURN	server	in	console.	Then	start	your	WebRTC	application	using	the	TURN	server—
when	the	application	will	contact	the	server,	you	will	see	debug	messages	on	the	console
display	where	the	server	is	running.	The	following	represents	the	kinds	of	messages	you
might	see	in	the	console:

129:	session	128000000000000001:	new,	username=<user1:alpha>,	lifetime=3600

129:	session	128000000000000001:	user	<user1:alpha>:	incoming	packet	

ALLOCATE	processed,	success

129:	handle_udp_packet:	New	UDP	endpoint:	local	addr	176.58.121.75:3478,	

remote	addr	89.209.127.164:50186

130:	session	128000000000000007:	user	<>:	incoming	packet	BINDING	

processed,	success

130:	session	128000000000000009:	user	<>:	incoming	packet	message	

processed,	error	401

131:	session	128000000000000009:	new,	username=<user2:beta>,	lifetime=600

131:	session	128000000000000009:	user	<user2:beta>:	incoming	packet	

ALLOCATE	processed,	success

131:	handle_udp_packet:	New	UDP	endpoint:	local	addr	176.58.121.75:3478,	

remote	addr	89.209.127.164:52914

131:	session	128000000000000010:	user	<>:	incoming	packet	message	

processed,	error	401

In	this	dump,	you	will	see	a	fragment	of	TURN	authentication	stage	where	two	clients	are
trying	to	get	authenticated.	Session	129	represents	the	client	user1	with	the	alpha
password,	and	session	131	represents	the	customer	user2	with	the	beta	password.	You
can	also	see	session	130,	which	represents	a	STUN	client—it	doesn’t	use	TURN
functionality,	so	you	don’t	see	any	usernames	or	passwords	from	this	client.

Now	if	you’ve	configured	the	TURN	server	with	default	console	options,	you	can	connect
to	the	TURN	console	and	get	more	specific	details	on	the	certain	session.	Connect	to	the
TURN	console:

telnet	localhost	5766

After	you’ve	connected,	it	will	show	you	something	like	the	following:

Connected	to	localhost.

Escape	character	is	'^]'.

TURN	Server

rfc5766-turn-server

Citrix-3.2.2.910	'Marshal	West'

Type	'?'	for	help

In	the	console	you	have	a	set	of	commands—using	?	or	help	you	can	ask	the	system	to
show	the	whole	list	of	available	commands	and	options.	The	command	we’re	interested	in
is	ps—it	shows	detailed	information	about	the	available	TURN/STUN	sessions.

>	ps

				7)	id=128000000000000004,	user	<user1:alpha>:

						started	78	secs	ago

						expiring	in	3522	secs

						client	protocol	UDP,	relay	protocol	UDP

						client	addr	x.x.x.x:58454,	server	addr	y.y.y.y:3478

						relay	addr	x.x.x.x:63599

						fingerprints	enforced:	ON

						mobile:	OFF

						SHA256:	OFF

						SHA	type:	SHA1

						usage:	rp=2,	rb=172,	sp=1,	sb=120

							rate:	r=0,	s=0,	total=0	(bytes	per	sec)

				8)	id=128000000000000010,	user	<user2:beta>:

						started	76	secs	ago

						expiring	in	524	secs

						client	protocol	UDP,	relay	protocol	UDP

						client	addr	x.x.x.x:52914,	server	addr	y.y.y.y:3478

						relay	addr	x.x.x.x:50796

						fingerprints	enforced:	OFF

						mobile:	OFF

						SHA256:	OFF

						SHA	type:	SHA1

						usage:	rp=2,	rb=140,	sp=1,	sb=120

						rate:	r=0,	s=0,	total=0	(bytes	per	sec)

		Total	sessions:	8

From	this	listing	we	can	see	that	in	total	there	are	eight	sessions	on	the	server.	In	this
preceding	fragment,	we	see	details	on	certain	two	sessions.	We	know	the	usernames
(user1	and	user2),	passwords,	IP	addresses,	time	of	expiration,	time	of	living,	and	some
more	details	of	each	session.

Using	the	TURN	console,	you	can	check	whether	some	problematic	client	has	connected
to	the	server	successfully	or	has	any	issues.	You	can	check	which	usernames	or	passwords
have	been	used	for	each	session.	You	can	also	know	about	the	used	protocols	and
encryption	details.	Analyzing	such	kinds	of	information	can	help	in	troubleshooting	the
TURN/STUN	communication	process.

How	it	works…
Having	direct	access	to	the	TURN	server,	you	can	use	its	console	to	get	more	certain	data
and	analyze	what’s	going	on.	Using	such	a	method,	you	can	debug	your	application	that	is
using	TURN.

There’s	more…
In	this	recipe,	we	considered	a	certain	way	to	implement	a	TURN	server,	using	rfc5766-
turn-server	software.	If	you	use	some	other	software,	it	might	be	supplied	with	some	other
specific	tools	for	debugging	and	diagnostic.

See	also
When	you	have	no	direct	access	to	the	TURN	server,	you	can	use	a	network	sniffer	to
capture	network	packets	and	analyze	the	situation	from	that	side.	To	learn	this
technique,	please	refer	to	the	Debugging	using	Wireshark	recipe.
To	configure	and	install	a	TURN	server,	refer	to	Chapter	3,	Integrating	WebRTC.

Debugging	using	Wireshark
WebRTC	applications	use	networks	very	intensively.	Thus	sometimes	you	might	need	to
debug	not	just	the	application,	but	also	its	communication	with	other	components	of	the
whole	system.

In	this	section,	we	will	cover	the	process	of	debugging	WebRTC	applications	using
network	sniffer.

Network	sniffer	is	a	tool	for	capturing	network	packets.	Usually,	such	tools	can	help	you
to	analyze	captured	data.	Using	sniffer,	you	can	see	and	understand	how	your	application
communicates	with	other	points.

Getting	ready
For	our	recipe,	we	will	use	Wireshark—which	is	a	free	and	multiplatform	network	sniffer
software.	Download	it	from	the	home	page	at	http://www.wireshark.org.

This	tool	is	very	user-friendly	and	works	on	most	popular	platforms,	so	you	don’t	need
any	specific	preparations.

You	will	also	need	some	WebRTC	application;	you	can	use	any	simple	hello	world
application	for	this	purpose.

http://www.wireshark.org

How	to	do	it…
Start	Wireshark.	You	will	see	a	UI	that	might	look	confusing	at	the	first	time.	This	tool	is
very	powerful	and	has	many	features,	but	for	this	task,	we	will	use	basic	functionality.
Perform	the	following	steps	to	use	Wireshark:

1.	 Click	on	the	Capture	button—Wireshark	will	begin	capturing	data	network	frames.
2.	 Start	your	WebRTC	application	and	navigate	Chrome	browser	to	the	application’s

main	web	page.
3.	 Navigate	to	the	application’s	web	page	using	another	browser	and	make	a	call	to	the

first	peer.
4.	 Wait	until	the	WebRTC	session	begins	and	click	on	the	Stop	button	in	the

Wireshark’s	UI.

Now	let’s	see	what	we	can	get	from	the	collected	data.	In	the	following	screenshots,	you
can	see	the	examples	from	my	machine.

In	the	first	screenshot,	you	can	see	a	set	of	network	packets	that	are	sent	between	peers
(my	notebook	and	another	work	machine).	The	selected	line	points	to	a	STUN	binding
success	response	with	following	decoded	fields:

After	that,	peers	try	to	establish	secure	direct	connection,	and	you	can	see	this	stage	in	the
following	screenshot:

Another	example	of	communication	through	secured	channel	is	depicted	in	the	following
screenshot.	Here	you	can	see	the	application’s	data	exchanging	stage.

The	following	screenshot	depicts	the	TURN	authentication	stage.	You	can	see	that	the
server	replied	with	401	unauthorized	request;	this	is	normal	step	at	this	stage	and	it	just
means	that	the	server	will	not	serve	for	anonymous	client.	After	getting	this	server’s

response,	the	client	will	continue	the	communication	process	and	will	send	credentials	to
the	server.

Using	a	network	sniffer,	such	as	Wireshark,	can	be	very	useful	and	helpful	in	the
debugging	process.	You	need	to	capture	network	packets	during	a	certain	stage	of	the
application’s	communication,	and	after	that,	you	can	analyze	the	communication	process
to	understand	what’s	wrong.

How	it	works…
A	network	sniffer	allows	you	to	capture	necessary	network	packets	that	are	being	sent
between	peers	and	servers.	By	analyzing	these	packets,	we	can	understand	what’s	going
on	in	the	communication	channels	and	fix	the	issues.

There’s	more…
There	are	other	network-related	tools	that	might	be	helpful	for	such	kind	of	task:

tcpdump:	This	is	a	console	network	sniffer	standard	for	UNIX-like	systems
mtr:	This	is	a	network	tool	that	can	be	useful	when	you	need	to	analyze	a	network
path	of	the	data	that	is	sent	between	peers

See	also
When	debugging	network-related	issues,	using	the	webrtc-internals	mechanism	might
also	be	useful.	Refer	to	the	Debugging	with	Chrome	recipe	for	the	details.
Regarding	the	process	of	debugging	TURN	servers,	you	can	refer	to	the	Debugging
TURN	recipe.

Chapter	5.	Working	with	Filters
In	this	chapter,	we	will	cover	the	following	topics:

Working	with	colors	and	grayscale
Working	with	brightness
Working	with	contrast
Working	with	saturation
Working	with	hue
Using	the	sepia	filter
Using	the	opacity	filter
Inverting	colors
Implementing	the	blur	effect
Implementing	the	dropped	shadow	effect
Combining	filters
Custom	video	processing

Introduction
With	the	introduction	of	the	HTML5	standard,	we	have	got	new	powerful	features.	One	of
the	interesting	ones	is	a	CSS	filter.	Using	this	feature,	you	can	control	a	variety	of	an
image’s	properties.	You	can	process	a	static	image	or	video	image	on	the	fly.

In	the	scope	of	WebRTC,	usage	of	filters	enables	you	to	implement	new	features	in	your
application;	it	can	control	video	images,	make	it	brighter	or	less	contrast,	and	apply	some
specific	kinds	of	filters.

In	this	section,	we	will	cover	using	of	image	processing,	implementing	several	practical
solutions	and	utilizing	video	filters.	You	will	see	before	and	after	cases	presented	in	the
screenshots.

Tip
This	feature	is	not	supported	by	all	web	browsers—use	Chrome	browser	while	testing	the
provided	examples.

The	work	on	HTML5	and	WebRTC	standards	is	not	finished	yet,	so	there	is	a	chance	that
certain	places	in	the	code	might	need	to	be	changed	in	future.	Note	that	these	filters	can
only	be	applied	locally.	This	means	that	during	a	video	conference,	if	you	apply	a	filter	to
the	video	from	your	web	camera,	you	will	see	the	changes	locally	in	your	browser—but
your	peer	won’t	see	these	changes.	It	will	see	the	original	video	translated	from	your	web
camera.	On	the	other	side,	you	can	apply	these	filters	to	the	remote	video	of	your	peer	that
is	shown	in	your	web	browser.

You	can	find	the	source	codes	of	the	demo	application	supplied	with	this	book.

Working	with	colors	and	grayscale
This	recipe	shows	how	to	work	with	a	filter	that	deals	with	the	colors	of	the	processed
video.	We	will	make	a	video	less	colorized	and	then	make	it	black	and	white.	This	recipe
can	be	used	as	a	kind	of	simple	special	effect	for	a	video.

How	to	do	it…
Perform	the	following	steps:

1.	 Add	the	control	button	to	the	main	web	page	of	your	application:

<button	onclick="doGrayScale()">do	grayscale</button>

2.	 Add	an	appropriate	JavaScript	function:

function	doGrayScale()	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="grayscale(50%)";

};

Here,	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video	from
the	web	camera.	The	following	screenshot	depicts	such	a	situation:

4.	 Now	click	on	the	do	grayscale	button—you	will	see	that	the	image	has	become	less
colorized,	as	shown	in	the	following	screenshot:

This	happened	because	we	applied	the	grayscale	filter	with	a	value	of	50%.	In	other
words,	we	removed	50	percent	of	colors	from	the	video.

5.	 Now	edit	the	code	and	put	100%	into	the	filter’s	value,	reload	the	web	page,	and	click
on	the	do	grayscale	button	again—you	will	see	that	video	becomes	black	and	white.

How	it	works…
When	you	click	on	the	do	grayscale	button,	the	JavaScript	function	from	the	second	step
of	the	How	to	do	it…	section	is	called.	This	function	applies	the	grayscale	filter	with	the
appropriate	value	to	the	video	object—using	its	style	HTML	property.	From	now	on,	the
web	browser	will	show	this	video	applying	the	filter	on	the	fly.

Working	with	brightness
This	recipe	shows	how	to	change	the	brightness	of	a	video	using	the	HTML5	filter.	If	you
develop	a	video	application,	it’s	usually	a	good	idea	to	give	some	control	on	the	video	to
customers,	allowing	them	to	change	the	contrast,	brightness,	and	other	parameters	of	the
video.

How	to	do	it…
Follow	the	given	steps:

1.	 Add	the	following	control	element	to	the	main	web	page	of	your	application—using
this	object	we	will	change	the	brightness:

Brightness

<input	type="range"	oninput="changeBrightness(this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="10">

2.	 Add	the	appropriate	JavaScript	function:

function	changeBrightness(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="brightness("	+	val	+	")";

};

3.	 Here,	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.Navigate	your	web	browser	to	the	web	page.	You	will	first	see	an
unprocessed	video	from	the	web	camera.	The	following	screenshot	depicts	such	a
situation:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Brightness.	Try
to	move	it	a	little	to	the	right—you	will	see	that	the	video	is	becoming	brighter.	In	the
following	screenshot	I	moved	the	control	too	much	to	the	right	and	the	image	became
too	bright:

5.	 If	you	move	it	too	much	to	the	left,	you	will	just	see	a	black	box.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	brightness	filter	with	the	control’s	value	to	the	video	object—using
its	style	HTML	property.	From	now	on,	the	web	browser	will	show	this	video	applying	the
filter	on	the	fly.

Working	with	contrast
This	recipe	shows	how	to	control	the	contrast	feature	of	a	video	using	the	HTML5	filter
feature.	This	is	the	second	most	important	control	that	customers	usually	want	to	have
when	using	video	applications.

How	to	do	it…
Follow	the	given	steps:

1.	 Add	a	control	element	to	the	main	web	page	of	your	application—using	this	object
we	will	change	the	contrast:

Contrast

<input	type="range"	oninput="changeContrast(this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="10">

2.	 Add	an	appropriate	JavaScript	function:

function	changeContrast(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="contrast("	+	val	+	")";

};

Here,	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video
from	the	web	camera.	The	following	screenshot	depicts	such	a	situation:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Contrast.	Try	to
move	it	to	the	right	or	left—you	will	see	that	the	video	has	more	and	less	contrast
respectively.	In	the	following	screenshot	I	moved	the	control	to	the	right	and
increased	the	contrast:

If	you	move	it	too	much	to	the	left,	you	will	see	just	a	light-gray	box.	If	you	move	the
control	to	the	right,	you	will	make	the	image	almost	black	(depends	on	the	amount	of	light
at	your	place).

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	contrast	filter	with	the	control’s	value	to	the	video	object—using	its
style	HTML	property.	From	now	on,	the	web	browser	will	show	this	video	applying	the
filter	on	the	fly.

Working	with	saturation
In	this	recipe,	we	will	cover	the	process	of	controlling	the	saturation	of	a	video	being
captured	from	the	web	camera	using	WebRTC.	Saturation	is	rarely	used	as	a	control
available	to	users.	Although	for	some	kinds	of	applications	it	might	be	very	useful.

How	to	do	it…
Perform	the	following	steps:

1.	 Add	a	control	element	to	you	application’s	main	web	page—using	this	object	we	will
change	the	saturation’s	level:

Saturation

<input	type="range"	oninput="changeSaturation(this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="10">

2.	 Add	an	appropriate	JavaScript	function:

function	changeSaturation(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="saturate("	+	val	+	")";

};

Here	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video
from	the	web	camera	with	normal	saturation.	The	following	screenshot	depicts	such	a
situation:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Saturation.	Try
to	move	it	to	the	extreme	left—you	will	see	that	the	video	became	black	and	white.
By	smoothly	moving	the	control	to	the	right,	you	will	add	saturation,	and	the	video
will	look	more	normal.	In	the	following	screenshot,	I	moved	the	control	too	much	to

the	right,	making	the	video	too	saturated:

Moving	the	control	to	the	right	bound	will	make	the	video	oversaturated,	and	it	will	be
barely	possible	for	us	to	see	what’s	happening	in	the	scene.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	saturate	filter	using	the	control’s	value	as	the	filter’s	parameter.	The
function	uses	the	object’s	style	HTML	property.	From	now	on,	the	web	browser	will	show
the	video	applying	the	chosen	filter	to	it	on	the	fly.

Working	with	hue
In	this	recipe,	we	will	learn	how	to	control	the	video’s	hue.	Usually,	you	will	not	use	this
filter	in	your	applications,	although,	sometimes	it	might	be	helpful;	for	example	when
you’re	using	some	kind	of	specific	video	equipment	that	might	need	this	way	of
processing	video.

How	to	do	it…
Follow	the	given	steps:

1.	 Add	a	control	element	to	the	application’s	main	web	page—using	this	object	we	will
change	the	video’s	hue:

Hue

<input	type="range"	oninput="changeHue(this.valueAsNumber);"	value="0"	

step="20"	min="0"	max="360">

Here,	you	can	see	that	we	have	set	the	max	value	as	360—this	is	because	the	hue’s
value	is	tied	to	degrees.	In	this	universe,	we	have	360	degrees,	so	the	maximum	value
for	this	filter	is	set	to	360.

2.	 Add	an	appropriate	JavaScript	function:

function	changeHue(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="hue-rotate("	+	val	+	"deg)";

};

We	have	also	added	the	deg	postfix	to	the	filter’s	value—it	means	degree.	Here,
localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video	playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video
from	the	web	camera,	with	no	filter	applied.	The	following	screenshot	depicts	this
stage:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Hue.	Try	to
move	it	to	the	left	and	right—you	will	see	that	the	video’s	colors	change.	This	is
because	by	moving	the	control,	you	change	the	image’s	hue.	In	the	following
screenshot	I	moved	the	control	to	the	right,	making	the	person’s	face	dark	pink,	and
the	yellow-blue	flag	became	white-green:

You	probably	will	use	this	filter	rarely.	It	can	be	useful	if	in	case	for	some	reason	you	have
a	broken	video	(from	your	web	camera	or	from	the	peer)	with	abnormal	hues.	Otherwise,
it	can	be	applied	just	for	fun.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	hue-rotate	filter	using	the	control’s	value	as	the	filter’s	degree.	The
function	uses	the	object’s	style	HTML	property.	From	now	on,	the	web	browser	will	show
the	video	applying	the	chosen	filter	to	it	on	the	fly.

Using	the	sepia	filter
This	recipe	covers	the	usage	of	the	sepia	filter	to	process	a	video	captured	from	a	remote
peer	or	local	web	camera	using	WebRTC.	This	is	a	popular	filter	often	used	as	a	special
effect	for	making	video	applications	more	friendly	and	warm.

How	to	do	it…
The	following	steps	will	show	you	how	to	use	the	sepia	filter:

1.	 Add	a	control	element	to	the	main	web	page	of	the	application	you’re	developing—
using	this	object	we	will	control	the	value	of	the	applied	Sepia	filter:

Sepia

<input	type="range"	oninput="changeSepia(this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="1">

2.	 Add	an	appropriate	JavaScript	function:

function	changeSepia(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="sepia("	+	val	+	")";

};

Here,	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	a	raw	video	in	the	web
camera,	with	no	filter	applied.	In	the	following	screenshot,	you	can	see	an	image
without	any	applied	filter:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Sepia.	Try	to
move	it	to	the	left	and	right—you	will	see	that	the	video’s	colors	change.	The
leftmost	position	makes	the	image	look	normal	(no	filter	is	applied).	The	rightmost
position	applies	the	filter	to	the	most	available	value.	In	the	following	screenshot,	I

moved	the	control	to	the	rightmost	end	and	made	the	video	look	as	if	it	was	taken
from	an	old	movie:

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	sepia	filter	to	the	video	image.	The	function	uses	the	object’s	style
HTML	property.	From	now	on,	the	web	browser	will	show	the	video	applying	the	chosen
filter	to	it	on	the	fly.

Using	the	opacity	filter
In	this	recipe,	we	will	cover	how	to	use	the	opacity	filter.	You	will	probably	rarely	use	it,
but	it	can	be	used	for	implementing	interesting	features,	such	as	picture	in	picture.

How	to	do	it…
Follow	these	steps:

1.	 Add	a	control	element	to	the	main	web	page	of	your	application—using	this	object
we	will	control	the	video’s	opacity:

Opacity

<input	type="range"	oninput="changeOpacity(this.valueAsNumber);"	

value="1"	step="0.1"	min="0"	max="1">

2.	 Add	an	appropriate	JavaScript	function:

function	changeOpacity(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="opacity("	+	val	+	")";

};

Here	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video
from	the	web	camera,	with	no	filter	applied.	The	following	screenshot	depicts	this
stage:

4.	 On	the	left-hand	side	of	the	page,	you	can	see	a	control	described	as	Opacity.	Try	to
move	it	to	the	left	and	right—you	will	see	that	the	video	becomes	less	and	more
transparent,	respectively.	The	top-right	position	is	the	normal	state,	and	the	top-left
position	is	the	transparent	state.	In	the	following	screenshot	I	moved	the	control	a

little	to	the	left,	and	you	can	see	that	the	person	in	the	image	is	barely	visible	because
of	the	image’s	transparency:

This	filter	can	also	be	useful	when	you	overlap	several	videos.	Another	utility	of	this	filter
is	that,	in	case	you’re	developing	a	multiuser	conference,	by	using	this	filter	and	changing
a	users’	video	transparency,	you	can	mark	the	participants	as	currently	speaking	or	on	hold
accordingly.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	opacity	filter	to	the	video	using	the	control’s	value.	The	function	uses
the	object’s	style	HTML	property.	From	now	on,	the	web	browser	will	show	the	video
applying	the	chosen	filter	to	it	on	the	fly.

Inverting	colors
This	recipe	covers	the	process	of	using	a	pretty	simple	filter:	inversion	of	colors.	It	will
hardly	be	useful	for	you	in	most	normal	cases,	but	it	might	be	helpful	if	for	some	reason
your	peer	sends	you	a	broken	video	with	inverted	colors,	or	you	get	one	from	your	web
camera.	Some	cameras	might	work	that	way	due	to	hardware	incompatibility	or	due	to	the
incorrect	installation	of	software	drivers.

How	to	do	it…
Perform	the	following	steps:

1.	 Add	a	control	button	to	your	application’s	main	web	page:

Inversion

<input	type="range"	oninput="invertColors(this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="1">

2.	 Add	an	appropriate	JavaScript	function:

function	invertColors(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="invert("	+	val	+	")";

};

Here	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

3.	 Navigate	your	browser	to	the	web	page.	You	will	first	see	an	unprocessed	video	from
the	web	camera.	The	following	screenshot	depicts	this	stage:

4.	 On	the	top	left	of	the	web	page	you	can	see	the	Inversion	control.	Try	to	move	it	to
the	left	and	right—you	will	see	that	the	video	image’s	colors	change	as	and	when	you
move	the	control	to	the	left	and	right.	In	the	following	screenshot	I	moved	the	control
almost	to	the	rightmost	position,	and	the	image	transformed	to	color	negative	of	the
original	image:

How	it	works…
When	you	click	on	the	Inversion	button,	the	JavaScript	function	from	the	second	step	is
called.	This	function	applies	the	invert	filter	with	the	appropriate	value	to	the	video
object—using	its	style	HTML	property.	From	now	on,	the	web	browser	will	show	this
video	applying	the	filter	online.

Implementing	the	blur	effect
This	recipe	dives	into	the	implementation	of	the	blur	effect.	If	you	have	worked	on	graphic
editing	computer	software,	then	you	are	likely	familiar	with	this	effect.

How	to	do	it…
The	following	steps	will	help	you	understand	how	to	implement	the	blur	effect:

1.	 Add	a	control	element	to	the	index	web	page	of	your	application—using	this	object
we	will	control	the	blur	effect:

Blur

<input	type="range"	oninput="doBlur(this.valueAsNumber);"	value="0"	

step="1"	min="0"	max="15">

2.	 Add	an	appropriate	JavaScript	function:

function	doBlur(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="blur("	+	val	+	"px)";

};

We	have	added	a	px	postfix	for	the	filter’s	value—this	is	because	of	the	blur’s
intensity	that	is	setting	in	pixels.	Here,	localVideo	is	the	ID	property	of	the	HTML
video	tag	for	the	local	video	playback.

3.	 Navigate	your	web	browser	to	the	web	page.	You	will	first	see	the	raw,	unprocessed
video	from	the	web	camera,	with	no	filter	applied.	The	following	screenshot	depicts
this	stage:

4.	 In	the	preceding	screenshot,	on	the	left-hand	side	of	the	page,	you	can	see	a	Blur
control.	By	moving	this	control	to	the	left	and	right,	you	can	set	the	intensity	of	the
blurriness	in	an	image.	The	leftmost	position	means	that	there	is	no	blur	and	you

should	see	a	normal	image.	In	the	following	screenshot	I	moved	the	control	a	little	to
the	right	from	the	middle,	and	you	can	see	that	the	image	became	very	blurry—it	is
barely	possible	to	recognize	the	person	in	the	video:

This	filter	can	be	used	for	indicating	that	you	have	muted	someone	on	the
videoconference,	or	for	indicating	that	the	conference	has	not	started.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	blur	filter	to	the	video	using	the	control’s	value.	The	function	uses	the
object’s	style	HTML	property.	From	now	on,	the	web	browser	will	show	the	video
applying	the	chosen	filter	on	the	fly.

Implementing	the	dropped	shadow	effect
In	this	recipe,	we	will	cover	the	process	of	implementing	the	dropped	shadow	effect.	This
filter	can	be	used	for	decoration	purposes.	Although	it	utilizes	CPU	resources	very
actively,	don’t	put	it	on	every	page.

How	to	do	it…
Follow	these	steps:

1.	 Add	a	control	element	to	the	appropriate	web	page	of	the	application—using	this
object	we	will	control	intensity	of	the	effect:

Shadow

<input	type="range"	oninput="doShadow(this.valueAsNumber);"	value="0"	

step="5"	min="0"	max="50">

2.	 Add	the	onLoad	handler	to	HTML’s	body	tag	of	the	web	page.	By	using	this	method,
we	will	initialize	the	dropped	shadow	effect.

<body	onload="doShadow(0);">

3.	 Add	an	appropriate	JavaScript	function:

function	doShadow(val)	{

		var	v	=	document.getElementById("localVideo");

		v.style.webkitFilter="drop-shadow("	+	val	+	"px	"	+	val	+	"px	10px	

green)";

};

We	have	added	the	px	postfix	for	the	filter’s	value—this	is	because	of	the	effect’s
intensity	is	setting	in	pixels.	Also,	you	can	see	that	we	have	set	the	shadow’s	width	to
10	pixels,	and	we	want	the	shadow	to	be	green.

Here,	localVideo	is	the	ID	property	of	the	HTML	video	tag	for	the	local	video
playback.

4.	 Navigate	your	web	browser	to	the	web	page.	You	should	see	a	normal	image	from
your	web	camera,	but	there	should	be	a	green	shadow	around	the	image.	The
following	screenshot	depicts	this	stage:

5.	 On	the	left-hand	side	of	the	page	you	can	see	the	Shadow	control.	By	moving	this
control	to	the	left	and	right,	you	can	control	the	shadow’s	position.	The	leftmost
position	of	the	control	is	the	initial	position	of	the	shadow—just	around	the	image
with	a	width	of	10	pixels,	as	we	have	set	it.	In	the	following	screenshot	I	moved	the
control	a	little	to	the	right	from	the	middle,	and	you	can	see	that	the	green	shadow
has	also	moved	to	the	bottom	and	right:

This	filter	can	be	used	for	additional	UI	decoration	while	developing	WebRTC
applications.	You	can	easily	control	the	shadow’s	size,	position,	and	color.

How	it	works…
When	you	move	the	control,	the	JavaScript	function	from	the	second	step	is	called.	This
function	applies	the	drop-shadow	filter	to	the	video	using	the	control’s	value.	The	function
uses	the	object’s	style	HTML	property.	From	now	on,	the	web	browser	will	show	the
video	applying	the	chosen	filter	on	the	fly.

Combining	filters
All	the	filters	described	in	this	chapter	can	be	combined	and	work	together.	In	this	recipe,
we	will	cover	this	topic	using	a	simple	practical	example—combining	two	filters:
brightness	and	contrast.

How	to	do	it…
Follow	the	given	steps:

1.	 Add	two	control	objects	to	the	page	for	each	of	the	filters	we	plan	to	use:

Brightness

<input	type="range"	oninput="doFilter('brightness',	

this.valueAsNumber);"	value="0"	step="0.1"	min="0"	max="10">

Contrast

<input	type="range"	oninput="doFilter('contrast',	this.valueAsNumber);"	

value="0"	step="0.1"	min="0"	max="10">

2.	 Add	a	global	variable	where	we	will	store	the	values	for	each	filter:

var	filters	=	{};

3.	 Add	an	appropriate	JavaScript	function	that	will	be	called	when	value	of	the	controls
(introduced	in	the	step	1)	is	changing:

function	doFilter(filtername,	val)	{

		filters[filtername]	=	val;

		var	v	=	document.getElementById("localVideo");

		var	f	=	"";

		for	(var	fname	in	filters)	{

				f	=	"	"	+	fname	+	"("	+	filters[fname]	+	")"	+	f;	}

		v.style.webkitFilter=f;

};

4.	 Navigate	your	web	browser	to	the	web	page.	You	should	see	the	usual	image	from
your	web	camera	and	two	controls:	for	brightness	and	contrast.	By	moving	these
controls,	you	can	change	the	value	of	the	image’s	contrast	and	brightness.	Changing
the	value	of	one	filter	doesn’t	reset	the	value	of	another.	In	the	following	screenshot,
you	can	see	such	a	web	page	with	the	described	feature:

How	it	works…
In	the	doFilter	function,	we	get	the	name	of	a	certain	filter	as	the	filtername	parameter.
Certain	filter	names	we	get	there	from	the	appropriate	filter’s	control	(refer	to	the	first
step).	As	the	second	parameter	of	the	function,	we	also	get	certain	filter	values	we	have	to
use	applying	the	filter.

After	getting	the	filter	name	and	filter	value	in	the	function,	we	will	store	these	parameters
(refer	to	the	second	step)	in	the	filters	array	variable	(we	will	use	it	as	an	associative
array).	Then	we	will	go	through	all	the	array	keys	and	values	(filter	names	and	their
values)	and	will	construct	the	string	f,	combining	necessary	filter	names	and	its	values.
We	will	delimit	filters	by	the	space	symbol.

After	that,	we	will	get	the	f	string	as	something	like	the	following:
brightness(3)	contrast(5)

We	will	use	the	constructed	string	to	change	the	style	of	the	appropriate	video	tag.	As	a
result,	we	will	apply	two	filters	in	parallel.

You	can	combine	as	many	filters	as	you	like,	but	you	should	know	that	some	of	them
could	be	resource	hungry.	If	your	application	sets	too	many	filters	at	one	time,	it	might
cause	issues	(the	web	browser	might	stack,	for	example).

Custom	video	processing
Until	now,	we	considered	standard	filters	only.	In	this	recipe,	we	will	cover	the	basic	case
of	custom	video	processing.	Using	that	approach,	you	can	implement	your	own	filters	and
processing	algorithms.

How	to	do	it…
As	an	example,	we	will	implement	the	pixelization	effect.

1.	 Put	a	canvas	object	somewhere	on	the	application’s	web	page.	This	canvas	will	be
used	for	getting	frames	from	the	video.	The	visibility	option	is	set	to	hidden—we
don’t	want	to	show	this	canvas	to	the	user,	we	will	use	it	for	our	internal,	technical
purposes	only.

<canvas	id="canva"	width="384px"	height="288px"	

style="visibility:hidden;"></canvas>

2.	 Put	another	canvas	object	on	the	web	page.	This	canvas	will	be	used	to	show	the
result	of	the	video	processing:

<canvas	id="fcanva"	width="384px"	height="288px"></canvas>

3.	 Add	a	button,	which	will	enable	the	processing:

<button	onclick="pixelize(10)">Pixelize</button>

4.	 Implement	the	pixelize	function.	This	function	actually	performs	all	the	video
processing:

		var	pixelsize	=	10;

		var	w	=	384;

		var	h	=	288;

function	pixelize(pixelsize)	{

				cnv.drawImage(lv,	0,	0,	w,	h);

				for(var	x	=	1;	x	<	w;	x	+=	pixelsize)

				{

								for(var	y	=	1;	y	<	h;	y	+=	pixelsize)

								{

												var	pxl	=	cnv.getImageData(x,	y,	1,	1);

												fcnv.fillStyle	=	

"rgb("+pxl.data[0]+","+pxl.data[1]+","+pxl.data[2]+")";

												fcnv.fillRect(x,	y,	x	+	pixelsize	-	1,	y	+	pixelsize	-	1);

								}

				}

				setTimeout(function	()	{

								pixelize(pixelsize);

				},	0);

}

5.	 In	the	following	screenshot,	you	can	see	how	the	filter	works.	On	the	left-hand	side,
the	original	video	is	shown,	on	the	right-hand	side,	you	can	see	the	same	video	after
applying	the	custom	filter:

How	it	works…
We	used	two	canvases:	one	(which	is	hidden)	was	used	to	copy	frames	from	the	video
stream	and	get	pixels;	the	second	canvas	was	used	to	show	processed	video	frames.

When	the	pixelize	function	is	called	the	first	time,	it	completes	processing	of	the	first
video	frame	and	then	sets	up	a	timer	to	be	called	the	next	time.	Thus,	the	browser	calls	this
function	again	and	again.	With	every	call,	it	gets	a	new	video	frame,	processes	it,	and	gets
displayed	using	the	second	canvas	object.

That	way,	you	can	implement	any	video	frame	processing	algorithm	and	use	it	as	your
custom	video	filter.

Chapter	6.	Native	Applications
In	this	chapter,	we	will	cover	the	following	topics:

Building	a	customized	WebRTC	demo	for	iOS
Compiling	and	running	an	original	demo	for	iOS
Compiling	and	running	a	demo	for	Android
Building	an	OpenWebRTC	library

Introduction
This	chapter	is	fully	dedicated	to	using	WebRTC	technology	while	developing	native
applications	for	mobile	platforms.	Here,	the	term	native	application	refers	to	the	kind	of
software	that	is	being	developed	using	native	tools	and	SDK	of	a	certain	mobile	platform.

First	of	all,	you	will	learn	how	to	get	and	compile	WebRTC	libraries	that	can	be	used	for
developing	native	applications.	There	is	no	separate	code	for	every	certain	platform.
Basically,	the	code	base	is	the	same	for	all	available	mobile	platforms.

In	other	recipes,	we	will	build	and	run	WebRTC	demo	applications	for	Android	and	iOS,
to	demonstrate	the	use	of	WebRTC	on	mobile	devices.

The	Building	a	customized	WebRTC	demo	for	iOS	recipe	covers	customized	demo
applications.	The	problem	is	that	the	WebRTC	code	base	is	under	active	development,	and
original	example	applications	might	not	demonstrate	all	available	features	of	the
technology.	For	example,	the	original	iOS	example	didn’t	support	video	calls	for	a	long
time	and	supported	audio	calls	only.	Nevertheless,	it	is	possible	to	build	a	native	iOS
application	that	supports	WebRTC	video	calls,	and	the	custom	demo	application
demonstrates	that.

Software	development	for	mobile	platforms	is	a	very	specific	field.	It	is	barely	possible	to
cover	development	of	an	application	in	just	one	chapter.	So	I	assume	that	you	have	enough
experience	of	developing	software	for	certain	mobile	platforms,	because	this	is	something
that	is	out	of	this	book’s	topic.	Here,	we	will	only	cover	WebRTC	specific	details	and	skip
the	rest.

The	flow	of	building	a	native	application	using	WebRTC	might	seem	tricky	and	non-
trivial.	The	following	diagram	represents	the	general	case	with	the	basic	steps	of	the	flow:

In	this	chapter,	we	will	cover	this	flow	with	all	its	steps.	We	will	also	learn	how	we	can
make	this	process	easier	and	simpler.

Building	a	customized	WebRTC	demo	for
iOS
In	this	recipe,	we	will	download	a	simple,	prepared	WebRTC	native	demo	application	for
iOS,	compile	it,	and	run	it	on	a	real	device.	This	application	can	be	used	for	video
conference	calls	via	Google’s	demo	website,	https://apprtc.webrtc.org.

This	demo	software	is	customized,	meaning	that	WebRTC	libraries	are	precompiled	and
should	be	just	linked	during	compilation	of	the	demo	application.	It	also	contains	some
changes	compared	to	the	original	demo	from	Google.

https://apprtc.webrtc.org

Getting	ready
The	demo	application	is	supposed	to	run	on	a	device,	not	in	a	simulator.	So	you	should	be
prepared	with	a	physical	Apple	device	(iPhone,	iPad)	to	work	on	this	recipe.

You	should	be	registered	on	the	iOS	Developer	Program	by	Apple	to	be	able	to	install	the
application	on	your	device.	If	you’re	not	participating	in	this	program,	it	is	worth
considering	joining.	For	details,	please	refer	to	the	program’s	official	web	page	at
http://developer.apple.com.

In	my	case,	I	used	the	following	tools:

iPhone	5s	with	iOS	8.0.2.
A	notebook	with	Windows	7	installed	as	the	second	device	to	build	the	WebRTC
communication	channel.
In	the	notebook,	I	used	a	Chrome	browser	to	run	a	WebRTC	application.
Xcode	6	to	compile	the	iOS	demo.	For	Xcode,	you	also	need	to	have	an	OS	X
machine	that	runs.

http://developer.apple.com

How	to	do	it…
Perform	the	following	steps	to	build	a	customized	WebRTC	demo:

1.	 Create	a	new	project	directory	and	go	to	it	as	follows:

mkdir	~/dev

cd	~/dev

2.	 Get	the	source	code	using	the	following	command:

git	clone	https://github.com/fycth/webrtc-ios

3.	 Open	the	demo	project	in	Xcode:	~/dev/webrtc-ios/ios-
example/AppRTCDemo.xcodeproj.

4.	 Choose	the	build	target	using	the	Xcode	menu	by	navigating	to	Product	|
Destination	|	iPhone.

5.	 Build	the	demo	application	by	navigating	to	Product	|	Build.
6.	 Connect	your	iPhone	to	the	machine	and	run	the	demo	by	navigating	to	Product	|

Run.

After	the	last	command	is	executed,	the	demo	application	will	be	installed	on	the	device
and	will	start	automatically;	it	can	take	a	couple	of	seconds,	so	don’t	rush	to	run	the
application	manually.

In	the	following	screenshot,	you	can	see	an	icon	of	the	installed	AppRTCDemo
application:

After	the	application	starts,	you	will	see	a	short	message	and	a	prompt	to	enter	a	room
number.	Navigate	your	browser	on	another	machine	to	http://apprtc.webrtc.org;	you	will
see	an	image	from	your	camera.	Copy	the	room	number	from	the	URL	string	and	enter	it
in	the	demo	application.	The	following	screenshot	represents	this	stage:

http://apprtc.webrtc.org

After	you	enter	the	code	and	click	on	the	Apply	button,	the	application	will	try	to	connect
to	the	virtual	room.	It	can	take	a	couple	of	seconds	(even	up	to	one	minute	in	my	case),	so
be	patient.

When	the	connection	is	established,	you	should	see	the	image	from	the	iPhone	in	the	web
browser,	and	vice	versa.	The	following	screenshot	depicts	a	screenshot	from	my	iPhone
after	I	established	a	WebRTC	connection	with	a	notebook:

In	the	screenshot,	you	can	see	a	man	with	an	iPhone,	from	which	this	screenshot	was
taken.	The	video	on	the	iPhone	is	translated	from	the	notebook’s	camera.	And	the
following	screenshot	represents	what	was	visible	on	the	notebook’s	display:

Here,	in	the	small	image	box	you	can	see	the	video	taken	from	the	notebook’s	web
camera.	In	the	big	image,	you	can	see	the	video	translated	from	the	iPhone.

There’s	more…
For	this	recipe	I	forked	the	code	from	another	project	on	GitHub.	To	learn	more,	refer	to
https://github.com/gandg/webrtc-ios.

I	introduced	some	changes	in	the	forked	project,	fixing	some	minor	issues.	You	can	fork
any	of	these	projects	and	take	its	code	as	the	base	of	your	own	project.

You	can	also	check	this	project	at	https://github.com/pristineio/webrtc-build-scripts.	It	is	a
set	of	scripts	developed	specially	to	facilitate	the	compilation	of	WebRTC	libraries’	code
for	iOS.	If	you	develop	WebRTC-based	software	for	Apple	mobile	OS,	this	tool	might	be
very	useful	for	you.

Building	a	demo	project	for	a	iOS	simulator
This	demo	project	uses	precompiled	WebRTC	libraries	that	are	built	to	use	on	physical
devices.	You	should	rebuild	these	libraries	in	case	you	want	to	run	the	application	under
an	iOS	simulator.

1.	 Download	and	install	Google	Developer	Tools:

mkdir	~/dev

cd	~/dev

git	clone	

https://chromium.googlesource.com/chromium/tools/depot_tools.git

export	PATH=`pwd`/depot_tools:"$PATH"

2.	 Configure	the	developer	tools:

gclient	config	http://webrtc.googlecode.com/svn/trunk

3.	 Inform	the	tools	that	we	want	to	build	libraries	for	iOS:

echo	"target_os	=	['ios']"	>>	.gclient

4.	 Download	the	WebRTC	source	code.	It	can	take	a	couple	of	minutes;	it	will
download	several	gigabytes	of	code.

gclient	sync

5.	 Configure	the	build	tool	as	follows:

export	GYP_DEFINES="build_with_libjingle=1	build_with_chromium=0	

libjingle_objc=1"

export	GYP_GENERATORS="ninja"

export	GYP_DEFINES="$GYP_DEFINES	OS=ios	target_arch=ia32"

export	GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS	output_dir=out_sim"

export	GYP_CROSSCOMPILE=1

gclient	runhooks

6.	 Build	the	libraries	as	shown	in	the	following	command	lines:

cd	~/dev/trunk

ninja	-C	out_sim/Debug	iossim	AppRTCDemo

The	building	process	can	take	some	time.	After	that	you	will	find	compiled	WebRTC

https://github.com/gandg/webrtc-ios
https://github.com/pristineio/webrtc-build-scripts

libraries	by	navigating	to	~/dev/trunk/out-sim/Debug/.

7.	 Now	you	should	copy	these	libraries	into	the	project’s	ios-example/libs	folder,	and
then	you	will	be	able	to	build	the	project	for	iOS	simulator.

See	also
Another	recipe,	Building	an	OpenWebRTC	library,	also	might	be	useful	for	you	in	the
scope	of	developing	WebRTC	native	applications	for	iOS
Refer	to	the	Compiling	and	running	an	original	demo	for	iOS	recipe	for	details	on
how	to	work	with	the	original	demo	from	Google

Compiling	and	running	an	original	demo
for	iOS
This	recipe	covers	how	to	build	an	original	Google	WebRTC	native	demo	application	for
iOS.	The	original	demo	from	Google	doesn’t	have	any	Xcode	project	files	using	which
you	could	open	the	IDE	and	do	the	job	with	comfort.	Unfortunately,	you	would	have	to
use	a	set	of	console	tools	and	scripts	to	compile	this	application.

Getting	ready
In	this	recipe,	we	will	cover	the	process	of	building	an	application	for	both	an	iOS
simulator	and	for	a	physical	device.	So	you	should	have	a	Mac	OS	X	machine	to	run	the
demo	in	a	simulator,	and	you	should	have	an	Apple	gadget	if	you	would	like	to	run	it	on	a
physical	device.

You	should	also	be	registered	on	the	Apple	iOS	Developer	Program	to	be	able	to	install
your	application	on	your	device.	If	you’re	not	participating	in	this	program,	it	is	worth
considering	joining.	For	details,	refer	to	the	program’s	official	web	page	at
http://developer.apple.com.

In	my	case,	I	used	a	MacBook	Pro	with	Mac	OS	X	10.9.5	installed	on	it.

http://developer.apple.com

How	to	do	it…
First	of	all,	we	need	to	download	and	build	the	WebRTC	source	code.	The	demo
application	is	a	part	of	this	code,	so	we	will	build	it	with	the	rest	by	performing	the
following	steps:

1.	 Download	and	install	Google	Developer	Tools:

mkdir	–p	~/dev	&&	cd	~/dev

git	clone	

https://chromium.googlesource.com/chromium/tools/depot_tools.git

export	PATH=`pwd`/depot_tools:"$PATH"

2.	 Configure	the	developer	tools:

gclient	config	http://webrtc.googlecode.com/svn/trunk

3.	 Inform	the	tools	that	we	want	to	build	libraries	for	iOS:

echo	"target_os	=	['ios','mac']"	>>	.gclient

4.	 Download	the	WebRTC	source	code.	It	can	take	a	couple	of	minutes;	it	will
download	several	gigabytes	of	code:

gclient	sync

Building	a	demo	project	for	an	iOS	device
The	following	steps	should	be	taken	if	you’re	building	a	demo	to	run	on	a	physical	Apple
device.	If	you	want	to	run	the	demo	on	an	iOS	simulator,	skip	this	section	and	continue	to
the	next	one:

1.	 Configure	the	build	tool	as	follows:

export	GYP_DEFINES="build_with_libjingle=1	build_with_chromium=0	

libjingle_objc=1"

export	GYP_GENERATORS="ninja"

export	GYP_DEFINES="$GYP_DEFINES	OS=ios	target_arch=armv7"

export	GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS	output_dir=out_ios"

export	GYP_CROSSCOMPILE=1

2.	 Prepare	the	build	scripts:

gclient	runhooks

3.	 Build	the	demo	application:

cd	~/dev/trunk

ninja	-C	out_ios/Debug-iphoneos	AppRTCDemo

Building	a	demo	project	for	an	iOS	simulator
This	section	describes	the	steps	that	should	be	taken	if	you	want	to	compile	the	application
for	an	iOS	simulator.	If	you	want	to	run	the	application	on	a	physical	device,	find	the

relevant	steps	provided	in	the	previous	section:

1.	 Configure	the	build	tool	as	follows:

export	GYP_DEFINES="build_with_libjingle=1	build_with_chromium=0	

libjingle_objc=1"

export	GYP_GENERATORS="ninja"

export	GYP_DEFINES="$GYP_DEFINES	OS=ios	target_arch=ia32"

export	GYP_GENERATOR_FLAGS="$GYP_GENERATOR_FLAGS	output_dir=out_sim"

export	GYP_CROSSCOMPILE=1

2.	 Prepare	build	scripts:

gclient	runhooks

3.	 Build	a	demo	application:

cd	~/dev/trunk

ninja	-C	out_sim/Debug	iossim	AppRTCDemo

4.	 Start	the	application	in	an	iOS	simulator:

~/dev/trunk/out_sim/Debug/AppRTCDemo.app

There’s	more…
The	original	code	from	Google	doesn’t	have	any	IDE	project	files	so	you	have	to	deal	with
console	scripts	through	all	the	development	process.	This	can	be	easier	if	you	use	some
third-party	tools	that	simplify	the	building	process.	Such	kinds	of	tools	can	be	found	at
http://tech.pristine.io/build-ios-apprtc/.

http://tech.pristine.io/build-ios-apprtc/

See	also
It	is	also	worth	taking	a	look	at	the	Building	a	customized	WebRTC	demo	for	iOS
recipe.	In	this	recipe	we	cover	the	process	of	using	a	ready-to-use	Xcode	simple
project	with	precompiled	WebRTC	binaries.

Compiling	and	running	a	demo	for
Android
Here,	you	will	learn	how	to	build	a	native	demo	WebRTC	application	for	Android.
Unfortunately,	the	supplied	demo	application	from	Google	doesn’t	contain	any	IDE-
specific	project	files,	so	you	will	have	to	deal	with	console	scripts	and	commands	during
all	the	building	process.

Getting	ready
We	will	need	to	check	whether	we	have	all	the	necessary	libraries	and	packages	installed
on	the	work	machine.	For	this	recipe,	I	used	a	Linux	box—Ubuntu	14.04.1	x64.	So	all	the
commands	that	might	be	specific	for	OS	will	be	relevant	to	Ubuntu.	Nevertheless,	using
Linux	is	not	mandatory	and	you	can	take	Windows	or	Mac	OS	X.

Tip
If	you’re	using	Linux,	it	should	be	64-bit	based.	Otherwise,	you	most	likely	won’t	be	able
to	compile	Android	code.

Preparing	the	system
First	of	all,	you	need	to	install	the	necessary	system	packages:

sudo	apt-get	install	git	git-svn	subversion	g++	pkg-config	gtk+-2.0	

libnss3-dev	libudev-dev	ant	gcc-multilib	lib32z1	lib32stdc++6

Installing	Oracle	JDK
By	default,	Ubuntu	is	supplied	with	OpenJDK,	but	it	is	highly	recommended	that	you
install	an	Oracle	JDK.	Otherwise,	you	can	face	issues	while	building	WebRTC
applications	for	Android.	One	another	thing	that	you	should	keep	in	mind	is	that	you
should	probably	use	Oracle	JDK	version	1.6—other	versions	(in	particular,	1.7	and	1.8)
might	not	be	compatible	with	the	WebRTC	code	base.	This	will	probably	be	fixed	in	the
future,	but	in	my	case,	only	Oracle	JDK	1.6	was	able	to	build	the	demo	successfully.

1.	 Download	the	Oracle	JDK	from	its	home	page	at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

In	case	there	is	no	download	link	on	such	an	old	JDK,	you	can	try	another	URL:
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase6-419409.html.

Tip
Oracle	will	probably	ask	you	to	sign	in	or	register	first.	You	will	be	able	to	download
anything	from	their	archive.

2.	 Install	the	downloaded	JDK:

sudo	mkdir	–p	/usr/lib/jvm

cd	/usr/lib/jvm	&&	sudo	/bin/sh	~/jdk-6u45-linux-x64.bin	--noregister

Here,	I	assume	that	you	downloaded	the	JDK	package	into	the	home	directory.

3.	 Register	the	JDK	in	the	system:

sudo	update-alternatives	--install	/usr/bin/javac	javac	

/usr/lib/jvm/jdk1.6.0_45/bin/javac	50000

sudo	update-alternatives	--install	/usr/bin/java	java	

/usr/lib/jvm/jdk1.6.0_45/bin/java	50000

sudo	update-alternatives	--config	javac

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html

sudo	update-alternatives	--config	java

cd	/usr/lib

sudo	ln	-s	/usr/lib/jvm/jdk1.6.0_45	java-6-sun

export	JAVA_HOME=/usr/lib/jvm/jdk1.6.0_45/

4.	 Test	the	Java	version:

java	-version

You	should	see	something	like	Java	HotSpot	on	the	screen—it	means	that	the	correct	JVM
is	installed.

Getting	the	WebRTC	source	code
Perform	the	following	steps	to	get	the	WebRTC	source	code:

1.	 Download	and	prepare	Google	Developer	Tools:

mkdir	–p	~/dev	&&	cd	~/dev

git	clone	

https://chromium.googlesource.com/chromium/tools/depot_tools.git

export	PATH=`pwd`/depot_tools:"$PATH"

2.	 Download	the	WebRTC	source	code:

gclient	config	http://webrtc.googlecode.com/svn/trunk

echo	"target_os	=	['android',	'unix']"	>>	.gclient

gclient	sync

The	last	command	can	take	a	couple	of	minutes	(actually,	it	depends	on	your	Internet
connection	speed),	as	you	will	be	downloading	several	gigabytes	of	source	code.

Installing	Android	Developer	Tools
To	develop	Android	applications,	you	should	have	Android	Developer	Tools	(ADT)
installed.	This	SDK	contains	Android-specific	libraries	and	tools	that	are	necessary	to
build	and	develop	native	software	for	Android.	Perform	the	following	steps	to	install
ADT:

1.	 Download	ADT	from	its	home	page
http://developer.android.com/sdk/index.html#download.

2.	 Unpack	ADT	to	a	folder:

cd	~/dev

unzip	~/adt-bundle-linux-x86_64-20140702.zip

3.	 Set	up	the	ANDROID_HOME	environment	variable:

export	ANDROID_HOME=`pwd`/adt-bundle-linux-x86_64-20140702/sdk

http://developer.android.com/sdk/index.html#download

How	to	do	it…
After	you’ve	prepared	the	environment	and	installed	the	necessary	system	components
and	packages,	you	can	continue	to	build	the	demo	application:

1.	 Prepare	Android-specific	build	dependencies:

cd	~/dev/trunk

source	./build/android/envsetup.sh

2.	 Configure	the	build	scripts:

export	GYP_DEFINES="$GYP_DEFINES	build_with_libjingle=1	

build_with_chromium=0	libjingle_java=1	OS=android"

gclient	runhooks

3.	 Build	the	WebRTC	code	with	the	demo	application:

ninja	-C	out/Debug	-j	5	AppRTCDemo

After	the	last	command,	you	can	find	the	compiled	Android	packet	with	the	demo
application	at	~/dev/trunk/out/Debug/AppRTCDemo-debug.apk.

Running	on	the	Android	simulator
Follow	these	steps	to	run	an	application	on	the	Android	simulator:

1.	 Run	Android	SDK	manager	and	install	the	necessary	Android	components:

$ANDROID_HOME/tools/android	sdk

Choose	at	least	Android	4.x—lower	versions	don’t	have	WebRTC	support.	In	the
following	screenshot,	I’ve	chosen	Android	SDK	4.4	and	4.2:

2.	 Create	an	Android	virtual	device:

cd	$ANDROID_HOME/tools

./android	avd	&

The	last	command	executes	the	Android	SDK	tool	to	create	and	maintain	virtual
devices.	Create	a	new	virtual	device	using	this	tool.	You	can	see	an	example	in	the
following	screenshot:

3.	 Start	the	emulator	using	just	the	created	virtual	device:

./emulator	–avd	emu1	&

This	can	take	a	couple	of	seconds	(or	even	minutes),	after	that	you	should	see	a
typical	Android	device	home	screen,	like	in	the	following	screenshot:

4.	 Check	whether	the	virtual	device	is	simulated	and	running:

cd	$ANDROID_HOME/platform-tools

./adb	devices

You	should	see	something	like	the	following:

List	of	devices	attached

emulator-5554			device

This	means	that	your	just	created	virtual	device	is	OK	and	running;	so	we	can	use	it
to	test	our	demo	application.

5.	 Install	the	demo	application	on	the	virtual	device:

./adb	install	~/dev/trunk/out/Debug/AppRTCDemo-debug.apk

You	should	see	something	like	the	following:

636	KB/s	(2507985	bytes	in	3.848s)

pkg:	/data/local/tmp/AppRTCDemo-debug.apk

Success

This	means	that	the	application	is	transferred	to	the	virtual	device	and	is	ready	to	be
started.

6.	 Switch	to	the	simulator	window;	you	should	see	the	demo	application’s	icon.	Execute
it	like	it	is	a	real	Android	device.	In	the	following	screenshot,	you	can	see	the
installed	demo	application	AppRTC:

Tip
While	trying	to	launch	the	application,	you	might	see	an	error	message	with	a	Java
runtime	exception	referring	to	GLSurfaceView.	In	this	case,	you	probably	need	to	switch
to	the	Use	Host	GPU	option	while	creating	the	virtual	device	with	Android	Virtual
Device	(AVD)	tool.

Fixing	a	bug	with	GLSurfaceView
Sometimes	if	you’re	using	an	Android	simulator	with	a	virtual	device	on	the	ARM
architecture,	you	can	be	faced	with	an	issue	when	the	application	says	No	config	chosen,
throws	an	exception,	and	exits.

This	is	a	known	defect	in	the	Android	WebRTC	code	and	its	status	can	be	tracked	at
https://code.google.com/p/android/issues/detail?id=43209.

The	following	steps	can	help	you	fix	this	bug	in	the	original	demo	application:

1.	 Go	to	the	~/dev/trunk/talk/examples/android/src/org/appspot/apprtc	folder
and	edit	the	AppRTCDemoActivity.java	file.	Look	for	the	following	line	of	code:

vsv	=	new	AppRTCGLView(this,	displaySize);

2.	 Right	after	this	line,	add	the	following	line	of	code:

vsv.setEGLConfigChooser(8,8,8,8,16,16);

https://code.google.com/p/android/issues/detail?id=43209

You	will	need	to	recompile	the	application:

cd	~/dev/trunk

ninja	-C	out/Debug	AppRTCDemo

3.	 Now	you	can	deploy	your	application	and	the	issue	will	not	appear	anymore.

Running	on	a	physical	Android	device
For	deploying	applications	on	an	Android	device,	you	don’t	need	to	have	any	developer
certificates	(like	in	the	case	of	iOS	devices).	So	if	you	have	an	Android	physical	device,	it
probably	would	be	easier	to	debug	and	run	the	demo	application	on	the	device	rather	than
on	the	simulator.

1.	 Connect	the	Android	device	to	the	machine	using	a	USB	cable.
2.	 On	the	Android	device,	switch	the	USB	debug	mode	on.
3.	 Check	whether	your	machine	sees	your	device:

cd	$ANDROID_HOME/platform-tools

./adb	devices

If	device	is	connected	and	the	machine	sees	it,	you	should	see	the	device’s	name	in
the	result	print	of	the	preceding	command:

List	of	devices	attached

QO4721C35410			device

4.	 Deploy	the	application	onto	the	device:

cd	$ANDROID_HOME/platform-tools

./adb	-d	install	~/dev/trunk/out/Debug/AppRTCDemo-debug.apk

You	will	get	the	following	output:

3016	KB/s	(2508031	bytes	in	0.812s)

pkg:	/data/local/tmp/AppRTCDemo-debug.apk

Success

After	that	you	should	see	the	AppRTC	demo	application’s	icon	on	the	device.

After	you	have	started	the	application,	you	should	see	a	prompt	to	enter	a	room	number.
At	this	stage,	go	to	http://apprtc.webrtc.org	in	your	web	browser	on	another	machine;	you

http://apprtc.webrtc.org

will	see	an	image	from	your	camera.	Copy	the	room	number	from	the	URL	string	and
enter	it	in	the	demo	application	on	the	Android	device.	Your	Android	device	and	another
machine	will	try	to	establish	a	peer-to-peer	connection,	and	might	take	some	time.	In	the
following	screenshot,	you	can	see	the	image	on	the	desktop	after	the	connection	with
Android	smartphone	has	been	established:

Here,	the	big	image	represents	what	is	translated	from	the	frontal	camera	of	the	Android
smartphone;	the	small	image	depicts	the	image	from	the	notebook’s	web	camera.	So	both
the	devices	have	established	direct	connection	and	translate	audio	and	video	to	each	other.

The	following	screenshot	represents	what	was	seen	on	the	Android	device:

There’s	more…
The	original	demo	doesn’t	contain	any	ready-to-use	IDE	project	files;	so	you	have	to	deal
with	console	commands	and	scripts	during	all	the	development	process.	You	can	make
your	life	a	bit	easier	if	you	use	some	third-party	tools	that	simplify	the	building	process.
Such	tools	can	be	found	at	http://tech.pristine.io/build-android-apprtc.

http://tech.pristine.io/build-android-apprtc

See	also
If	you	consider	developing	WebRTC	applications	for	iOS,	the	Building	a	customized
WebRTC	demo	for	iOS	recipe	might	also	be	useful	for	you

Building	an	OpenWebRTC	library
At	the	beginning	of	2014,	Ericsson	presented	its	own	open	source	implementation	of
WebRTC	stack—OpenWebRTC.	Ericsson	states	that	this	product	supports	iOS,	Android,
Windows,	Linux,	and	Mac	OS	X	platforms	from	the	box.	In	this	recipe,	we	will	build	this
new	WebRTC	stack.	This	implementation	came	out	just	a	couple	of	days	ago	and	there
isn’t	a	ready-to-use	example	supplied	with	it,	so	we	will	build	just	the	library.

Getting	ready
At	this	time,	OpenWebRTC	build	scripts	support	Linux	and	Mac	OS	X	platforms	only,	and
there	is	no	ready	solution	to	build	OpenWebRTC	under	Windows.	So	you	need	Linux	or
OS	X	installed	to	work	on	this	recipe.

In	my	case,	I	used	a	Mac	Book	Pro	with	Mac	OS	X	10.9	installed.

How	to	do	it…
Perform	the	following	steps	to	build	OpenWebRTC:

1.	 Get	the	source	codes:

mkdir	~/dev	&&	cd	~/dev

git	clone	git@github.com:EricssonResearch/openwebrtc.git	--recursive

cd	openwebrtc

2.	 Configure	the	environment	(this	step	will	take	some	time).	If	you’re	working	under
Linux,	put	linux	instead	of	osx	in	the	command:

cd	scripts/bootstrap

./bootstrap.sh	-r	osx

cd	-

3.	 Build	the	dependencies.	You	can	also	use	linux	and	android	words	if	you’re
building	for	the	appropriate	platforms.	Note	that	you	need	Android	NDK	installed
and	configured	to	build	dependencies	for	this	platform:

cd	scripts/dependencies

./build-all.sh	-r	osx	ios

./deploy_deps.sh

cd	–

4.	 Build	OpenWebRTC	using	the	following	command:

./build.sh	-r	osx	ios

After	all	these	commands	are	executed,	you	will	have	OpenWebRTC	libraries	built	and
ready	to	use.	To	further	learn	this	library,	it	might	be	worth	taking	a	look	at	Bowser—an
open	sourced	web	browser	completely	built	on	the	OpenWebRTC	stack.

There’s	more…
This	new	library	is	under	active	development	and	even	its	documentation	actively
changes.	So,	for	more	details,	please	refer	to	the	home	page	of	the	project	at
http://www.openwebrtc.io.

Also	take	a	look	at	Bowser—an	open	source	WebRTC-oriented	web	browser	from
Ericsson.	This	browser	can	run	under	both	Android	and	iOS.	Its	home	page	is	at
http://www.openwebrtc.io/bowser/.

http://www.openwebrtc.io
http://www.openwebrtc.io/bowser/

Chapter	7.	Third-party	Libraries
In	this	chapter,	we	will	cover	the	following	topics:

Building	a	video	conference	using	SimpleWebRTC
Creating	an	application	using	RTCMultiConnection
Developing	a	simple	WebRTC	chat	using	PeerJS
Making	a	simple	video	chat	with	rtc.io
Using	OpenTok	to	create	a	WebRTC	application
Creating	a	multiuser	conference	using	WebRTCO

Introduction
When	a	new	technology	or	an	instrument	appears	on	the	market,	it	might	not	be
reasonable	to	create	your	own	framework	or	a	library	by	utilizing	this	new	tool	to	develop
a	product.	Sometimes	it	is	worth	looking	around	and	using	a	Software	Development	Kit
(SDK)	or	a	ready-to-use	framework	that	implements	all	the	technology’s	necessary
features.

WebRTC	is	a	very	young	technology	that	is	under	active	development.	We	don’t	have	a
completed	standard	yet,	only	a	draft.	There	are	many	third-party	frameworks	and	libraries
available	that	utilize	WebRTC	features	and	provide	a	nice	API	for	a	developer.	To	use
such	tools,	it	is	not	necessary	to	get	deep	into	WebRTC	and	standards,	but	you	can
concentrate	just	on	your	product.

Tip
Most	of	the	frameworks	provide	you	with	a	complete	set	of	tools.	Therefore,	you	might
need	to	use	Google’s	adapter.js	in	addition	to	keep	compatibility	between	multiple	web
browsers	or	their	(browsers’)	versions.

Usually,	such	an	SDK	can	make	a	developer’s	life	easier—they	often	provide	additional
services	such	as	signaling	and	STUN/TURN	servers.	When	using	a	good	third-party
framework,	you	often	don’t	need	to	take	care	of	the	server	infrastructure	and	installation
and	maintenance	of	your	own	signaling	server;	you	can	work	only	on	the	client	code—the
rest	will	be	served	by	the	chosen	solution.

In	this	chapter,	we	will	consider	a	few	such	tools.	You	will	find	recipes	that	utilize	a	tool’s
API	to	implement	basic	examples	of	WebRTC	applications.	All	examples	are	based	on	the
official	tool’s	documentation	and	demo	applications	from	their	home	pages.

Tip
WebRTC	stack	is	developed	with	great	attention	to	security,	and	the	web	browser	might
not	even	run	the	application	in	case	it	is	accessed	from	the	local	system.	So	while	testing
the	provided	examples,	place	them	on	a	web	server.	As	an	alternative,	you	can	use	cloud
services	such	as	Dropbox	for	accessing	the	application	over	public	folder—in	this	case,
you	should	change	all	HTTP	links	in	the	application	to	HTTPS.

Building	a	video	conference	using
SimpleWebRTC
SimpleWebRTC	is	a	very	easy-to-use	framework	written	in	JavaScript.	Using	this	product,
you	can	start	your	first	video	conference	in	just	one	minute.	In	this	recipe,	we	will	cover
the	process	of	creating	of	a	basic	WebRTC	application	using	the	SimpleWebRTC	software.

Getting	ready
In	this	recipe,	we	will	create	a	simple	HTML	page	by	utilizing	a	SimpleWebRTC
framework.	So,	you	will	need	a	text	editor	and	a	WebRTC	compliant	web	browser.	If
you’re	using	Firefox,	the	demo	might	be	executed	from	the	local	filesystem;	if	you’re
using	Chrome,	you	should	use	a	web	server—otherwise,	the	browser	will	prohibit	the
running	of	the	application.

How	to	do	it…
To	build	a	basic	videoconference	using	this	tool,	you	need	to	create	just	one	HTML	web
page.	You	don’t	even	need	to	register	an	account	in	the	vendor’s	system.

1.	 Create	an	empty	HTML	file	and	add	the	following	code:

<!DOCTYPE	html>

<html>

<head	lang="en">

<meta	charset="UTF-8">

2.	 Include	a	SimpleWebRTC	JavaScript	framework:

<script	src="http://simplewebrtc.com/latest.js"></script>

</head>

<body>

3.	 Create	a	video	object	for	a	local	video:

<video	height="300"	id="localVideo"></video>

4.	 Create	a	video	object	for	the	video	translated	from	a	remote	peer:

<div	id="remotesVideos"></div>

5.	 Create	a	button	and	tie	a	handler	function	to	it.	When	you	click	the	button,
videoconference	will	be	created:

<button	id="btn1"	onclick="startconf()">Start	conference</button>

<script	language="JavaScript">

6.	 Set	up	a	variable	to	handle	the	SimpleWebRTC	object:

				var	webrtc	=	null;

The	following	function	is	called	when	a	customer	clicks	the	button:

				function	startconf()	{

7.	 Create	a	SimpleWebRTC	object	with	initial	parameters.	We	will	send	the	IDs	of	both
the	video	objects	(for	local	and	remote	video);	also,	we	will	ask	the	framework	to	get
media	access	immediately:

								webrtc	=	new	SimpleWebRTC({

												localVideoEl:	'localVideo',

												remoteVideosEl:	'remotesVideos',

												autoRequestMedia:	true

								});

The	following	code	actually	starts	the	videoconference.	Here,	we	will	also	set	up	a
virtual	room	name,	Room86#—you	are	free	to	use	any	name	you	would	like	to	use:

								webrtc.on('readyToCall',	function	()	{

												webrtc.joinRoom('Room86#');

								});

				};

</script>

</body>

</html>

8.	 Now,	save	this	file	in	a	folder	and	open	it	in	your	web	browser	(in	my	case,	I’ve	used
Firefox	for	Mac	OS	X).

How	it	works…
When	you	open	the	HTML	file	in	your	web	browser,	you	will	see	a	blank	page	with	a
button.	Click	on	the	Start	conference	button—the	web	browser	will	capture	a	video	from
your	web	camera	and	show	it	on	the	page	(it	may	ask	you	for	access	permission).

In	the	following	screenshot,	you	can	see	this	stage:

Now,	it	is	time	to	connect	another	peer.	Open	the	same	HTML	file	in	another	browser.	You
can	even	copy	it	to	another	machine	and	open	it	there.	Then	click	on	the	Start	conference
button—after	a	couple	of	seconds,	the	peer	connection	should	be	established	and	you
should	see	both	the	local	and	remote	images	on	every	browser	window,	as	shown	in	the
following	screenshot:

Note	you	don’t	need	to	install	a	signaling	server—SimpleWebRTC	takes	care	of	it.	When
you	call	SimpleWebRTC’s	JavaScript	API	methods,	it	communicates	to	the	signaler	server
installed	on	the	SimpleWebRTC’s	servers.

There’s	more…
Although	we	considered	a	very	simple	example	of	using	a	SimpleWebRTC	framework,
this	tool	can	be	used	to	build	more	complex	applications.	For	more	details,	please	refer	to
the	official	documentation	for	the	framework	at	http://simplewebrtc.com.

http://simplewebrtc.com

Creating	an	application	using
RTCMultiConnection
This	recipe	covers	the	process	of	creating	a	simple	WebRTC	application	using	an	open
source	RTCMultiConnection	framework.	This	is	a	JavaScript-based	framework	that
allows	you	to	build	applications	and	services	using	many	WebRTC	features,	including
experimental	features.

Getting	ready
To	work	with	this	framework,	we	will	build	a	basic	WebRTC	service	that	supports	private
virtual	rooms	for	videoconferencing.	You	will	need	to	write	some	HTML	and	JavaScript
code,	which	does	not	need	to	develop	any	server-side	parts.	So,	having	just	a	text	editor
and	a	WebRTC	compliant	web	browser	should	be	enough	to	work	on	this	recipe.

How	to	do	it…
The	RTCMultiConnection	tool	takes	all	of	the	work	regarding	the	signaling	on	its	own.
Thus,	you	can	concentrate	on	the	client	side	and	UI.

1.	 Create	an	empty	HTML	file	and	add	the	following	code	inside	it:

<!DOCTYPE	html>

<html>

<head	lang="en">

				<meta	charset="UTF-8">

2.	 Include	the	HTML	style	supplied	with	the	tool.	This	is	not	necessary,	and	you	can	use
your	own	CSS:

<link	rel="stylesheet"	href="http://cdn.webrtc-

experiment.com/style.css">

3.	 Include	the	framework’s	JavaScript	libraries:

				<script	src="http://cdn.webrtc-experiment.com/firebase.js">	

</script>

				<script	src="http://cdn.webrtc-

experiment.com/RTCMultiConnection.js">

</script></head>

<body>

<section>

4.	 The	following	anchor	is	used	for	creating	virtual	rooms:

<code>

<strong	id="unique-token"></code>

5.	 Add	an	input	object	to	handle	the	virtual	room	name:

				<input	type="text"	id="conference-name">

6.	 Create	a	new	button	element	on	the	page.	When	it	is	clicked,	a	new	conference	will
start:

				<button	id="setup-new-conference"	class="setup">Setup	New	

Conference</button>

</section>

<table	style="width:	100%;"	id="rooms-list"></table>

7.	 Create	a	separate	div	layer	for	the	video	objects:

<div	id="videos-container"></div>

</section>

<script>

8.	 Create	a	new	connection	object.	Using	this	object,	we	can	control	the	connection
itself:

				var	connection	=	new	RTCMultiConnection();

				connection.session	=	{

								audio:	true,

								video:	true

				};

9.	 Declare	a	callback	handler	that	will	be	called	when	a	new	media	stream	is	ready.	This
handler	will	create	a	new	video	object	for	every	media	stream	and	place	it	in	the
video	container	layer:

				connection.onstream	=	function(e)	{

								e.mediaElement.width	=	300;

								videosContainer.insertBefore(e.mediaElement,	

videosContainer.firstChild);

				};

10.	 Create	a	handler	for	the	stream	ended	event.	It	will	be	called	when	a	stream	is
stopped	(peer	connection	is	interrupted,	for	example).	This	function	will	remove	the
irrelevant	video	object:

				connection.onstreamended	=	function(e)	{

								e.mediaElement.style.opacity	=	0;

								setTimeout(function()	{

												if	(e.mediaElement.parentNode)	{

																e.mediaElement.parentNode.removeChild(e.mediaElement);

												}

								},	1000);

				};

				var	sessions	=	{	};

11.	 Make	a	function	that	will	be	called	when	a	new	virtual	room	is	created,	and	someone
is	waiting	for	the	remote	peer	to	join:

				connection.onNewSession	=	function(session)	{

								if	(sessions[session.sessionid])	return;

								sessions[session.sessionid]	=	session;

								var	tr	=	document.createElement('tr');

12.	 We	need	to	notify	the	customer	when	the	virtual	room	is	created.	The	following	code
shows	such	a	notification	and	creates	a	Join	button:

								tr.innerHTML	=	'<td>'	+	session.extra['session-name']	+	

'	is	running	a	conference!</td>'	+	'<td><button	

class="join">Join</button></td>';

								roomsList.insertBefore(tr,	roomsList.firstChild);

								var	joinRoomButton	=	tr.querySelector('.join');

								joinRoomButton.setAttribute('data-sessionid',	

session.sessionid);

13.	 Create	an	appropriate	code	for	the	Join	button:

								joinRoomButton.onclick	=	function()	{

												this.disabled	=	true;

												var	sessionid	=	this.getAttribute('data-sessionid');

												session	=	sessions[sessionid];

												if	(!session)	throw	'No	such	session	exists.';

												connection.join(session);

								};

				};

var	videosContainer	=	document.getElementById('videos-container')	||	

document.body;

				var	roomsList	=	document.getElementById('rooms-list');

				document.getElementById('setup-new-conference').onclick	=	

function()	{

								this.disabled	=	true;

								connection.extra	=	{

								'session-name':	document.getElementById('conference-

name').value	||	'Anonymous'

								};

								connection.open();

				};

				connection.connect();

14.	 The	unique	URL	to	share	the	virtual	room	with	others	is	created	on	the	client	side	as
well.	The	following	code	represents	how	this	task	is	solved	in	the	example:

				(function()	{

								var	uniqueToken	=	document.getElementById('unique-token');

								if	(uniqueToken)

												if	(location.hash.length	>	2)	

uniqueToken.parentNode.parentNode.parentNode.innerHTML	=	'<h2	

style="text-align:center;"><a	href="'	+	location.href	+	'"	

target="_blank">Share	this	link</h2>';

												else	uniqueToken.innerHTML	=	

uniqueToken.parentNode.parentNode.href	=	'#'	+	(Math.random()	*	new	

Date().getTime()).toString(36).toUpperCase().replace(/\./g	,	'-');

				})();

</script>

</body>

</html>

That	is	all.	Save	this	file	on	a	disk,	and	navigate	your	web	browser	to	it.

How	it	works…
When	you	open	the	HTML	file,	you	will	see	a	web	page	similar	to	the	following:

Now,	create	a	new	private	virtual	room	by	clicking	on	the	URL	to	the	left	(it	will	open	a
new	tab	in	the	browser	as	shown	in	the	following	screenshot).

In	this	page,	you	should	enter	your	name	or	a	room’s	name	in	the	input	textbox,	and	then
click	on	the	Setup	New	Conference	button.	After	that,	you	should	see	the	image	from
your	web	camera:

Now,	copy	the	Share	this	link	URL	and	open	it	on	another	machine,	or	you	can	open	it	in
another	browser’s	tab,	like	I	did.	You	will	see	a	big	Join	button	like	the	one	shown	in	the
following	screenshot:

So,	to	connect	to	the	conference,	just	click	on	the	Join	button.	Right	after	that,	the
conference	will	try	to	establish	peer-to-peer	connection.	If	everything	goes	well,	every
peer	should	see	both	local	and	remote	images.

Tip
In	my	case,	I	used	the	same	machine	(just	separate	browser	windows),	so	the	images	are
identical.

This	library	uses	Firebase	(https://www.firebase.com)	for	signaling,	so	you	don’t	need	to
install	and	maintain	your	own	signaling	server—RTCMultiConnection	will	take	care	of
that.

https://www.firebase.com

There’s	more…
RTCMultiConnection	allows	you	to	create	more	complex	applications,	and	utilize
advanced	WebRTC	features.	Here,	we	touched	just	the	basic	concepts.

For	details	on	how	to	use	this	framework,	refer	to	its	official	home	page
https://www.webrtc-experiment.com/RTCMultiConnection/.

https://www.webrtc-experiment.com/RTCMultiConnection/

Developing	a	simple	WebRTC	chat	using
PeerJS
In	this	recipe,	we	will	use	the	PeerJS	WebRTC	framework	to	create	a	simple	web	chat
concept	by	utilizing	data	channels.

Getting	ready
PeerJS	requires	developers	to	register	before	they	can	use	its	API.	During	the	registration
process	(it	is	free),	a	developer	gets	a	unique	ID	that	can	be	used	to	work	with	the	API.	If
you	would	like	to	use	this	framework	and	don’t	mind	registering,	then	visit	its	home	page
at	http://peerjs.com.

http://peerjs.com

How	to	do	it…
Using	PeerJS	is	really	simple,	and	a	basic	example	can	be	performed	using	just	one
HTML	file.	In	the	following	steps,	you	will	find	such	an	index	file	with	comments	in	all
the	important	places:

1.	 Place	the	standard	HTML	headers:

<!DOCTYPE	html>

<html>

<head	lang="en">

				<meta	charset="UTF-8">

2.	 Include	the	PeerJS	library:

				<script	src="http://cdn.peerjs.com/0.3/peer.js"></script>

</head>

<body>

3.	 Add	an	input	textbox.	Here,	a	customer	can	enter	his/her	name	while	connecting	to
the	system.	For	simplicity,	the	same	box	will	be	used	to	enter	further	chat	messages:

<input	type="text"	id="inputbox"/>

4.	 Create	three	buttons	to	connect	to	the	system,	to	call	the	remote	peer,	and	to	send
messages	to	the	remote	peer:

<button	id="btn_connect"	onclick="Connect()">Connect!</button>

<button	id="btn_call"	onclick="CallTo()"	disabled="true">Call	

To</button>

<button	id="btn_send"	onclick="SendMessage()">Send	message</button>

<script	language="JavaScript">

5.	 In	the	following	variable,	you	should	add	your	developer	API	ID	you	got	from	the
PeerJS	system	during	the	registration	process:

var	MY_API_ID	=	YOUR_API_ID;

				var	peer	=	null;

				var	conn	=	null;

6.	 The	following	function	takes	the	customer’s	name	and	registers	it	in	the	PeerJS
system.	After	that,	another	peer	can	connect	to	this	customer	using	its	name	for
connection:

				function	Connect()	{

								var	myname	=	document.getElementById("inputbox").value;

								peer	=	new	Peer(myname,	{key:	MY_API_ID});

7.	 Set	up	a	callback	function	on	the	connection	event.	This	function	will	be	called	when
a	remote	peer	establishes	a	connection	with	us.	Here,	we	will	also	set	a	helper
function	that	will	print	the	received	messages	from	the	remote	peer	to	the	browser’s
console:

								peer.on('connection',	function(connection)	{

												connection.on('data',	function(data){

																console.log("Remote	peer	said:	"	+	data);

												});

												conn	=	connection;

								});

								document.getElementById("btn_connect").setAttribute("disabled",	

"true");

								

document.getElementById("btn_call").removeAttribute("disabled");

				};

8.	 We	also	need	a	function	that	will	call	the	remote	peer.	The	following	code	represents
such	a	function.	It	takes	a	remote	peer’s	name	from	the	input	textbox	and	calls	PeerJS
to	establish	the	connection:

				function	CallTo()	{

								var	remotename	=	document.getElementById("inputbox").value;

								conn	=	peer.connect(remotename);

								

document.getElementById("btn_call").setAttribute("disabled","true");

				};

9.	 To	send	messages,	we	need	an	appropriate	function	responsible	for	that.	Such	a
function,	you	can	find	in	the	following:

				function	SendMessage()	{

								var	msg	=	document.getElementById("inputbox").value;

								conn.send(msg);

				};

</script>

</body>

</html>

That	is	all.	Save	this	file	on	a	disk,	and	navigate	your	web	browser	to	the	demo.

How	it	works…
Open	a	prepared	HTML	file,	in	that,	you	will	see	an	input	box	and	three	buttons.	Enter	a
peer’s	name	in	the	textbox	and	click	on	the	Connect!	button.	It	will	connect	to	a	PeerJS
system.	Now,	open	the	file	in	another	browser	(we	can	also	open	the	file	on	another
machine).	Enter	another	peer’s	name,	and	click	on	Connect!.	In	the	following	screenshot,
I	used	peer1	and	peer2	as	names	for	the	peers:

Now,	for	the	second	peer,	enter	the	first	peer’s	name	(peer1	in	my	case)	in	the	textbox,
and	click	on	the	Call	To	button.	This	will	start	to	establish	the	peer	connection—peer2

will	try	to	make	a	call	to	peer1.

After	the	connection	is	established,	we	can	test	message	exchanging.	For	peer2,	enter	any
input	in	the	textbox	and	click	on	Send	message.	The	entered	text	will	be	sent	to	peer1,	and
will	be	printed	in	its	browser	console.	In	the	following	screenshot,	I	have	sent	a	Hello,
peer1!!!	message:

PeerJS	uses	its	own	infrastructure	such	as	signaling	mechanisms.	Thus,	if	you	use	PeerJS,
you	don’t	need	to	be	worried	of	developing	signaling	protocols,	and	you	can	concentrate
on	developing	your	application.

There’s	more…
You	can	find	out	more	about	PeerJS	from	its	home	page	http://peerjs.com.

This	is	a	free	and	open	source	tool,	so	it	can	be	used	as	an	SDK	or	can	be	taken	as	a	code
base	for	developing	another	WebRTC	framework	for	custom	application.

http://peerjs.com

Making	a	simple	video	chat	with	rtc.io
rtc.io	is	a	free	and	open	source	project	for	developing	WebRTC	applications.	It	provides
simple	and	clean	APIs.	In	this	recipe,	we	will	use	rtc.io	to	create	a	basic	video	chat
service.

Getting	ready
Like	most	of	the	other	considered	frameworks,	rtc.io	serves	its	own	signaling	server,	so
you	can	create	a	basic	application	using	just	a	few	lines	of	JavaScript	code	and	HTML.
For	this	recipe,	you	will	need	a	text	editor	and	web	browser.

How	to	do	it…
Create	an	empty	file	in	the	text	editor	and	add	the	following	code.	This	is	a	plain	HTML
with	a	JavaScript	section.	Relevant	places	are	commented	inline.

1.	 First	of	all,	let’s	add	the	standard	HTML	heads	and	bit	of	styles:

<!DOCTYPE	html>

<html>

<head	lang="en">

				<meta	charset="UTF-8">

				<style>

								#messages	{

												border:	1px	solid	black;

												min-height:	20px;

								}

				</style>

2.	 Include	the	rtc.io	framework	in	this	project:

<script	src="https://rawgit.com/rtc-io/rtc/master/dist/rtc.js">

</script></head>

<body>

3.	 Create	separate	div	layers	for	chat	messages	and	both	local	and	remote	video:

				<div	id="messages"	contenteditable></div>

				<div	id="l-video"></div>

				<div	id="r-video"></div>

				<script	language="JavaScript">

4.	 Set	the	framework’s	options—for	a	basic	case,	we	just	need	a	room’s	name	and
signaler	server	URL.	Here,	we	used	a	native	signaler	sever	hosted	on	the	rtc.io
infrastructure.	It’s	an	open	source	code,	so	you	can	download	and	install	it	on	your
own	server:

								var	rtcOpts	=	{

												room:	'my-cool-test-room',

												signaller:	'//switchboard.rtc.io'

								};

5.	 Initialize	the	framework	and	create	an	RTC	object:

								var	rtc	=	RTC(rtcOpts);

								var	localVideo	=	document.getElementById('l-video');

								var	remoteVideo	=	document.getElementById('r-video');

								var	messageWindow	=	document.getElementById('messages');

6.	 Bind	handler	functions	to	appropriate	events	that	might	be	generated	on	the	data
channel:

function	bindDataChannelEvents(id,	channel,	attributes,	connection)	{

				channel.onmessage	=	function	(evt)	{

								messageWindow.innerHTML	=	evt.data;

				};

				messageWindow.onkeyup	=	function	()	{

								channel.send(this.innerHTML);

				};

}

7.	 Initialize	the	session:

								function	init(session)	{

												session.createDataChannel('chat');

												session.on('channel:opened:chat',	bindDataChannelEvents);

								}

8.	 Display	the	local	and	remote	video:

								localVideo.appendChild(rtc.local);

								remoteVideo.appendChild(rtc.remote);

9.	 Handle	the	session	establishing	event:

								rtc.on('ready',	init);

				</script>

</body>

</html>

The	example	can	be	saved	on	the	disk	and	uploaded	to	the	web	server.

How	it	works…
We	created	a	new	RTC	object	using	the	framework’s	API.	Additionally,	we	set	a	couple	of
functions	to	handle	events.	Then,	we	initialized	the	framework	by	calling	the	appropriate
API	method.	After	all	this,	it	will	handle	signaling	and	peer	connections.

There’s	more…
For	additional	details	and	advanced	examples	of	how	to	use	this	framework,	refer	to	its
homepage	at	http://rtc.io.

http://rtc.io

Using	OpenTok	to	create	a	WebRTC
application
OpenTok	is	a	proprietary	framework	that	allows	you	to	build	WebRTC-based	applications
using	the	provided	SDK.	In	this	recipe,	we	will	build	a	simple	demo	application	by
utilizing	the	basic	features	of	the	tool.

Getting	ready
To	use	this	framework,	you	should	register	with	the	OpenTok	system,	and	get	a	unique
developer	API	ID.	To	use	this	system,	you	should	have	three	keys:	the	API	key,	session
ID,	and	token.	The	following	instructions	cover	the	process	of	creating	these	keys:

1.	 Navigate	to	https://tokbox.com/opentok/	and	click	on	Sign	Up.
2.	 Fill	the	form	and	click	on	the	Sign	Up	button:

3.	 Check	for	an	e-mail	from	OpenTok	(TokBox),	they	will	send	a	confirmation	e-mail
with	the	API	key.	Write	down	the	API	key—this	is	the	first	key.	Confirm	your
registration	with	their	system	by	clicking	on	the	appropriate	link	in	the	e-mail:

https://tokbox.com/opentok/

4.	 Navigate	to	https://dashboard.tokbox.com—find	the	Projects	section	and	click	on	the
View	Details	button:

5.	 In	the	next	page,	you	will	see	Project	Tools,	where	you	can	create	a	new	session.	Do
it	by	using	the	Create	button:

https://dashboard.tokbox.com

6.	 Right	after	that,	you	will	see	the	generated	session	ID	below	the	button.	Write	down
this	value—this	is	the	second	key.

7.	 After	you’ve	created	the	new	session,	you	should	create	a	new	token	based	on	this
session.	At	the	Generate	Token	section,	click	on	the	Generate	button:

8.	 After	you’ve	clicked	on	the	Generate	button,	you	will	see	a	generated	token	below
the	button,	as	shown	in	the	following	screenshot:

9.	 Write	down	this	value	(generated	token)—this	is	the	third	key.

Now,	you	have	all	the	three	keys	to	work	with	the	OpenTok	system.

Note
This	framework	requires	you	to	use	a	web	server,	so	for	this	recipe,	you	should	have	a
web	server	installed	and	configured.

How	to	do	it…
Now,	when	you	have	your	API	ID,	a	session	ID,	and	two	tokens,	you	can	continue	with
the	process	of	building	an	application	using	OpenTok:

1.	 Create	an	empty	HTML	file	(let’s	name	it	index.html)	and	add	the	following	code:

<!DOCTYPE	html>

<html>

<head	lang="en">

				<meta	charset="UTF-8">

				<title></title>

2.	 Include	the	OpenTok	code	in	your	project:

<script	src	=	

'http://static.opentok.com/webrtc/v2.2/js/opentok.min.js'>

</script>

				<script	type="text/javascript">

3.	 In	the	following	lines,	you	should	insert	the	actual	API	ID	(API	key)	and	session	ID,
which	you	have	generated	while	preparing	for	this	recipe:

								var	apiKey	=	<YOUR_API_ADI>;

								var	sessionId	=	<GENERATED_SESSION_ID>;

4.	 As	you	remember,	we	generated	two	tokens—one	per	client.	Add	the	first	token	in
the	following	variable:

								var	token	=	<TOKEN_1>;

5.	 Initialize	the	session	by	calling	the	OpenTok	method:

								var	session	=	OT.initSession(apiKey,	sessionId);

6.	 Subscribe	to	events:

								session.on("streamCreated",	function(event)	{

												session.subscribe(event.stream);

								});

7.	 Open	a	new	connection:

								session.connect(token,	function(error)	{

												var	publisher	=	OT.initPublisher();

												session.publish(publisher);

								});

				</script>

</head>

<body>

8.	 We	also	need	an	HTML	object	to	publish	a	video	there:

				<h1>Awesome	video	feed!</h1>

				<div	id="myPublisherDiv"></div>

</body>

</html>

9.	 Now,	save	the	file	and	create	another	one	(let’s	name	it	index2.html).	Make	the
second	file	identical	to	the	first	one.	Then,	edit	the	second	file	and	change	the	token
value	in	the	following	line:

								var	token	=	<TOKEN_2>;

10.	 In	the	second	file,	you	should	add	the	second	token,	which	you	have	generated	while
preparing	for	this	recipe.	Save	the	second	file.

Now,	we	have	two	files:	index.html	and	index2.html.	They	are	both	identical,	except	for
their	token	value—every	file	contains	its	own	token	ID.	Put	both	the	files	in	the	web
server.

How	it	works…
It’s	time	to	test	what	we’ve	developed.

Open	a	web	browser	and	navigate	to	the	place	where	the	first	file	(index.html)	is	located.
Note	that	you	should	not	use	a	filesystem,	and	both	the	files	should	be	accessible	on	the
web	server.	After	the	page	is	opened,	you	will	see	an	image	from	the	web	camera.

Now,	on	another	machine,	open	a	web	browser	and	navigate	to	the	second	file
(index2.html).	You	will	see	the	similar	picture.	In	a	couple	of	seconds,	the	connection
will	be	established	and	you	will	see	local	and	remote	images	on	both	the	machines.	The
following	screenshot	represents	this	case:

In	my	case,	I	have	used	the	same	machine,	but	opened	the	files	in	two	different	web
browsers.

OpenTok	takes	care	of	signaling	and	other	technical	processes.	As	you	can	see,	the
application	is	very	compact,	and	the	code	is	very	short	and	clean.	You	don’t	need	to	spend
time	on	installation	and	maintenance	of	server	components,	they	are	provided	and
transparently	served	by	the	framework.

There’s	more…
We	considered	just	a	simple	example	of	using	OpenTok,	but	this	tool	allows	you	to	create
more	complex	applications	with	advanced	features.	For	details,	refer	to	OpenTok’s	home
page	at	https://tokbox.com/opentok/.

https://tokbox.com/opentok/

Creating	a	multiuser	conference	using
WebRTCO
In	this	recipe,	we	will	create	a	simple	application	that	supports	a	multiuser
videoconference.	We	will	do	it	using	WebRTCO—an	open	source	JavaScript	framework
for	developing	WebRTC	applications.

Getting	ready
For	this	recipe,	you	should	have	a	web	server	installed	and	configured.	The	application	we
will	create	can	work	while	running	on	the	local	filesystem,	but	it	is	more	convenient	to	use
it	via	the	web	server.

To	create	the	application,	we	will	use	the	signaling	server	located	on	the	framework’s
homepage.	The	framework	is	open	source,	so	you	can	download	the	signaling	server	from
GitHub	and	install	it	locally	on	your	machine.	GitHub’s	page	for	the	project	can	be	found
at	https://github.com/Oslikas/WebRTCO.

https://github.com/Oslikas/WebRTCO

How	to	do	it…
The	following	recipe	is	built	on	the	framework’s	infrastructure.	We	will	use	the
framework’s	signaling	server.	What	we	need	to	do	is	include	the	framework’s	code	and	do
some	initialization	procedure:

1.	 Create	an	HTML	file	and	add	common	HTML	heads:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

2.	 Add	some	style	definitions	to	make	the	web	page	looking	nicer:

				<style	type="text/css">

								video	{

												width:	384px;

												height:	288px;

												border:	1px	solid	black;

												text-align:	center;

								}

								.container	{

												width:	780px;

												margin:	0	auto;

								}

				</style>

3.	 Include	the	framework	in	your	project:

<script	type="text/javascript"	src	=	

"https://cdn.oslikas.com/js/WebRTCO-1.0.0-beta-min.js"	charset="utf-8">

</script>

</head>

4.	 Define	the	onLoad	function—it	will	be	called	after	the	web	page	is	loaded.	In	this
function,	we	will	make	some	preliminary	initializing	work:

<body	onload="onLoad();">

5.	 Define	HTML	containers	where	the	local	video	will	be	placed:

<div	class="container">

				<video	id="localVideo"></video>

</div>

6.	 Define	a	place	where	the	remote	video	will	be	added.	Note	that	we	don’t	create
HTML	video	objects,	and	we	just	define	a	separate	div.	Further,	video	objects	will	be
created	and	added	to	the	page	by	the	framework	automatically:

<div	class="container"	id="remoteVideos"></div>

<div	class="container">

7.	 Create	the	controls	for	the	chat	area:

<div	id="chat_area"	style="width:100%;	height:250px;	overflow:	auto;	

margin:0	auto	0	auto;	border:1px	solid	rgb(200,200,200);	background:	

rgb(250,250,250);"></div>

</div>

<div	class="container"	id="div_chat_input">

				<input	type="text"	class="search-query"	placeholder="chat	here"	

name="msgline"	id="chat_input">

				<input	type="submit"	class="btn"	id="chat_submit_btn"	

onclick="sendChatTxt();"/>

</div>

8.	 Initialize	a	few	variables:

<script	type="text/javascript">

				var	videoCount	=	0;

				var	webrtco	=	null;

				var	parent	=	document.getElementById('remoteVideos');

				var	chatArea	=	document.getElementById("chat_area");

				var	chatColorLocal	=	"#468847";

				var	chatColorRemote	=	"#3a87ad";

9.	 Define	a	function	that	will	be	called	by	the	framework	when	a	new	remote	peer	is
connected.	This	function	creates	a	new	video	object	and	puts	it	on	the	page:

				function	getRemoteVideo(remPid)	{

								var	video	=	document.createElement('video');

								var	id	=	'remoteVideo_'	+	remPid;

								video.setAttribute('id',id);

								parent.appendChild(video);

								return	video;

				}

10.	 Create	the	onLoad	function.	It	initializes	some	variables	and	resizes	the	controls	on
the	web	page.	Note	that	this	is	not	mandatory,	and	we	do	it	just	to	make	the	demo
page	look	nicer:

				function	onLoad()	{

								var	divChatInput	=	document.getElementById("div_chat_input");

								var	divChatInputWidth	=	divChatInput.offsetWidth;

								var	chatSubmitButton	=	

document.getElementById("chat_submit_btn");

								var	chatSubmitButtonWidth	=	chatSubmitButton.offsetWidth;

								var	chatInput	=	document.getElementById("chat_input");

								var	chatInputWidth	=	divChatInputWidth	-	chatSubmitButtonWidth	

-	40;

								chatInput.setAttribute("style","width:"	+	chatInputWidth	+	

"px");

								chatInput.style.width	=	chatInputWidth	+	'px';

								var	lv	=	document.getElementById("localVideo");

11.	 Create	a	new	WebRTCO	object	and	start	the	application.	After	this	point,	the
framework	will	start	signaling	connection,	get	access	to	the	user’s	media,	and	will	be
ready	for	income	connections	from	remote	peers:

webrtco	=	new	WebRTCO('wss://www.webrtcexample.com/signalling',	lv,	

OnRoomReceived,	onChatMsgReceived,	getRemoteVideo,	OnBye);

};

Here,	the	first	parameter	of	the	function	is	the	URL	of	the	signaling	server.	In	this
example,	we	used	the	signaling	server	provided	by	the	framework.	However,	you	can
install	your	own	signaling	server	and	use	an	appropriate	URL.	The	second	parameter
is	the	local	video	object	ID.	Then,	we	will	supply	functions	to	process	messages	of
received	room,	received	message,	and	received	remote	video	stream.	The	last
parameter	is	the	function	that	will	be	called	when	some	of	the	remote	peers	have	been
disconnected.

12.	 The	following	function	will	be	called	when	the	remote	peer	has	closed	the
connection.	It	will	remove	video	objects	that	became	outdated:

				function	OnBye(pid)	{

								var	video	=	document.getElementById("remoteVideo_"	+	pid);

								if	(null	!==	video)	video.remove();

				};

13.	 We	also	need	a	function	that	will	create	a	URL	to	share	with	other	peers	in	order	to
make	them	able	to	connect	to	the	virtual	room.	The	following	piece	of	code
represents	such	a	function:

				function	OnRoomReceived(room)	{

								addChatTxt("Now,	if	somebody	wants	to	join	you,	should	use	this	

link:	<a	href=\""+window.location.href+"?

room="+room+"\">"+window.location.href+"?room="+room+"

",chatColorRemote);

				};

14.	 The	following	function	prints	some	text	in	the	chat	area.	We	will	also	use	it	to	print
the	URL	to	share	with	remote	peers:

				function	addChatTxt(msg,	msgColor)	{

								var	txt	=	""	+	getTime()	+	msg	+	"

";

								chatArea.innerHTML	=	chatArea.innerHTML	+	txt;

								chatArea.scrollTop	=	chatArea.scrollHeight;

				};

15.	 The	next	function	is	a	callback	that	is	called	by	the	framework	when	a	peer	has	sent
us	a	message.	This	function	will	print	the	message	in	the	chat	area:

				function	onChatMsgReceived(msg)	{

								addChatTxt(msg,	chatColorRemote);

				};

16.	 To	send	messages	to	remote	peers,	we	will	create	another	function,	which	is
represented	in	the	following	code:

				function	sendChatTxt()	{

								var	msgline	=	document.getElementById("chat_input");

								var	msg	=	msgline.value;

								addChatTxt(msg,	chatColorLocal);

								msgline.value	=	'';

								webrtco.API_sendPutChatMsg(msg);

				};

17.	 We	also	want	to	print	the	time	while	printing	messages;	so	we	have	a	special	function
that	formats	time	data	appropriately:

				function	getTime()	{

								var	d	=	new	Date();

								var	c_h	=	d.getHours();

								var	c_m	=	d.getMinutes();

								var	c_s	=	d.getSeconds();

								if	(c_h	<	10)	{	c_h	=	"0"	+	c_h;	}

								if	(c_m	<	10)	{	c_m	=	"0"	+	c_m;	}

								if	(c_s	<	10)	{	c_s	=	"0"	+	c_s;	}

								return	c_h	+	":"	+	c_m	+	":"	+	c_s	+	":	";

				};

18.	 We	have	some	helper	code	to	make	our	life	easier.	We	will	use	it	while	removing
obsolete	video	objects	after	remote	peers	are	disconnected:

				Element.prototype.remove	=	function()	{

								this.parentElement.removeChild(this);

				}

				NodeList.prototype.remove	=	HTMLCollection.prototype.remove	=	

function()	{

								for(var	i	=	0,	len	=	this.length;	i	<	len;	i++)	{

												if(this[i]	&&	this[i].parentElement)	{

																this[i].parentElement.removeChild(this[i]);

												}

								}

				}

</script>

</body>

</html>

Now,	save	the	file	and	put	it	on	the	web	server,	where	it	could	be	accessible	from	web
browser.

How	it	works…
Open	a	web	browser	and	navigate	to	the	place	where	the	file	is	located	on	the	web	server.
You	will	see	an	image	from	the	web	camera	and	a	chat	area	beneath	it.	At	this	stage,	the
application	has	created	the	WebRTCO	object	and	initiated	the	signaling	connection.	If
everything	is	good,	you	will	see	an	URL	in	the	chat	area.	Open	this	URL	in	a	new	browser
window	or	on	another	machine—the	framework	will	create	a	new	video	object	for	every
new	peer	and	will	add	it	to	the	web	page.

The	number	of	peers	is	not	limited	by	the	application.	In	the	following	screenshot,	I	have
used	three	peers:	two	web	browser	windows	on	the	same	machine	and	a	notebook	as	the
third	peer:

Using	this	framework,	you	can	attain	your	own	signaling	server	or	you	can	use	the	one
that	is	provided	by	the	tool.

There’s	more…
For	now,	the	tool	supports	basic	WebRTC	features	and	it	is	in	the	beta	stage.	WebRTCO	is
under	development	and	it	might	be	improved	in	the	future.

For	details	on	this	framework,	refer	to	its	home	page	at	https://www.oslikas.com/.

Source	codes	and	examples	can	be	found	on	the	GitHub	page	at
https://github.com/Oslikas/WebRTCO.

More	examples	can	be	found	on	the	demo	page,	http://www.webrtcexample.com.

https://www.oslikas.com/
https://github.com/Oslikas/WebRTCO
http://www.webrtcexample.com

Chapter	8.	Advanced	Functions
In	this	chapter,	we	will	cover	the	following	topics:

Visualizing	a	microphone’s	sound	level
Muting	a	microphone
Pausing	a	video
Taking	a	screenshot
Streaming	media

Introduction
This	chapter	covers	advanced	examples	of	using	WebRTC	features.	The	following	recipes
allow	you	to	improve	your	application’s	usability	and	make	it	friendlier	by	adding
advanced	features	and	functionality.

All	the	recipes	in	this	chapter	are	oriented	on	the	client	side	and	implemented	in
JavaScript.	Some	of	them	appear	to	be	pretty	simple	and	others	might	be	more	complex,
but	the	main	purpose	of	these	recipes	is	to	make	the	application	more	adaptable	to	real	life
and	friendly	for	customers.

Visualizing	a	microphone’s	sound	level
If	your	application	works	with	audio	and	video	(for	example,	you’re	developing	a	video
conferencing	service),	it	would	be	probably	a	good	idea	to	add	a	live	indication	of	the
microphone	sound	level.	Using	this	feature,	peers	can	estimate	and	control	their
microphone’s	audio	levels.	So,	in	this	recipe,	we’re	implementing	microphone	activity
indication.

Getting	ready
This	recipe	is	simple,	and	you	will	just	need	a	text	editor	to	create	and	edit	HTML.	To	test
this	recipe,	you	should	have	a	web	server	installed	and	configured—it	is	highly
recommended	to	test	the	example	via	a	web	server	rather	than	just	on	a	local	filesystem;
otherwise,	the	web	browser	might	block	calls	to	the	WebRTC	API.

How	to	do	it…
Perform	the	following	steps:

1.	 Create	an	HTML	file	and	insert	the	following	codes.	Note	that	the	important	places
are	commented	inline:

<!DOCTYPE	html>

<html>

<head	lang="en">

				<meta	charset="UTF-8">

2.	 Include	the	WebRTC	adapter	from	Google.	This	file	allows	you	to	use	universal
function	names	in	all	supported	web	browsers:

<script	src	=	

"https://rawgit.com/GoogleChrome/webrtc/master/samples/web/js/adapter.j

s">	</script>

</head>

<body>

3.	 Create	a	simple	HTML	element	to	display	a	local	video	from	a	web	camera:

<div><video	width="384"	id="lVideo"	muted="true"	autoplay="true">

</video></div>

4.	 Create	a	canvas	element—here,	we	will	represent	the	microphone’s	sound	level:

<canvas	width="384"	height="20"	id="micecanvas"	style="background-

color:	white;"></canvas>

<script	type="text/javascript">

The	following	function	gets	access	to	user	media:

				function	init()	{

								var	constraints	=	{"audio":	true,	"video":	{"mandatory":	{},	

"optional":	[]}};

								getUserMedia(constraints,	onUserMediaSuccess,	

onUserMediaError);

				}

5.	 We	need	to	handle	errors,	so	a	simple	error	handler	function	can	be	found	in	the
following	code:

				function	onUserMediaError(error)	{

								console.log("Error:	"	+	error);

				}

The	following	callback	function	will	be	called	after	the	application	has	access	to	the
user	media:

				function	onUserMediaSuccess(stream)	{

6.	 To	attach	a	media	stream	to	the	video	control,	use	the	following	code:

												var	localVideo	=	document.getElementById("lVideo");

												attachMediaStream(localVideo,	stream);

7.	 Set	up	a	function	alias	to	make	this	work	under	different	supported	browsers:

												window.AudioContext	=	window.AudioContext	||	

window.webkitAudioContext	||	window.mozAudioContext;

8.	 Initialize	the	local	variables	and	get	access	to	the	microphone:

												var	audioContext	=	new	AudioContext();

												var	analyser	=	audioContext.createAnalyser();

												var	microphone	=	

audioContext.createMediaStreamSource(stream);

9.	 Assign	a	script	processor	to	the	audio	context.	By	using	the	script	processor,	we	will
be	able	to	process	audio	data	and	calculate	microphone	activity	level:

												var	javascriptNode	=	

audioContext.createScriptProcessor(2048,	1,	1);

												analyser.smoothingTimeConstant	=	0.3;

												analyser.fftSize	=	1024;

												microphone.connect(analyser);

												analyser.connect(javascriptNode);

												javascriptNode.connect(audioContext.destination);

												var	canvasContext	=	

document.getElementById("micecanvas").getContext("2d");

10.	 Set	up	an	audio	data	processing	function—here,	we	will	do	all	the	calculations:

												javascriptNode.onaudioprocess	=	function()	{

																var	array	=		new	

Uint8Array(analyser.frequencyBinCount);

																analyser.getByteFrequencyData(array);

																var	values	=	0;

																var	length	=	array.length;

																for	(var	i	=	0;	i	<	length;	i++)	{

																				values	+=	array[i];

																}

11.	 Calculate	the	average	sound	level	value	and	draw	it	on	the	canvas:

																var	average	=	values	/	length;

																canvasContext.clearRect(0,	0,	384,	20);

																canvasContext.fillStyle	=	'red';

																canvasContext.fillRect(0,	0,	average,	20);

												}

				}

12.	 The	following	function	starts	the	application:

				init();

</script>

</body>

</html>

13.	 Now,	save	the	file	and	put	it	on	the	web	server,	making	it	accessible	through	a	certain
URL.

14.	 Navigate	to	the	URL.	You	will	see	the	image	from	your	web	camera,	and	a	short
horizontal	red	bar	beneath	it.	You	will	just	see	the	local	video	because	we	haven’t

implemented	an	interconnection	with	remote	peers.
15.	 Now,	talk	through	the	microphone	and	make	some	noise—the	bar	will	respond	to	the

sound	by	changing	its	length	and	trembling.	This	bar	represents	the	microphone’s
sound	activity	level	and	you	can	estimate	it	visually.

How	it	works…
Using	WebRTC	API,	we	will	create	the	audio	context	and	audio	analyzer	objects.	Then,
we	will	get	access	to	the	microphone.	We	will	also	create	ScriptProcessor	with	a	buffer
of	2048	bytes,	and	one	input	and	one	output	channel.	Using	the	fftSize	attribute	of	the
analyzer,	we	will	set	the	size	of	the	Fast	Fourier	Transform	(FFT)	buffer	to	1024.	We
will	connect	the	analyzer	and	the	script	processor,	and	then,	we	will	set	up	the
onaudioprocess	handler	function.	Now,	approximately	every	0.3	seconds,	we	will	get	a
signal	from	the	browser	to	our	handler	function	where	we	use	received	data	to	calculate
the	sound	volume	and	to	draw	it	on	the	bar.

See	also
Regarding	detailed	explanations	of	the	possible	usage	of	the	audio	API,	you	can	refer
to	its	official	documentation	at	http://webaudio.github.io/web-audio-api/

http://webaudio.github.io/web-audio-api/

Muting	a	microphone
Usually,	voice	calling	software	has	a	microphone	muting	feature.	So,	you	can	enable	or
disable	your	microphone	during	the	call,	deciding	whether	the	remote	peer	should	hear
your	voice	or	not.	In	this	recipe,	we	will	implement	such	a	feature	for	a	WebRTC
application.

Getting	ready
For	this	example,	you	don’t	need	any	preliminary	specific	steps.	Use	your	development
environment	as	you	usually	do.

How	to	do	it…
Follow	these	steps:

1.	 For	this	feature,	you	need	to	add	a	button	element	to	your	HTML	page.	This	button
will	enable	or	disable	the	microphone:

<button	id="mute_btn"	onclick="muteBtnClick()">Mute	Mic</button>

2.	 You	also	need	to	set	up	a	handler	for	the	onclick	event	of	the	element—it	will	do	the
actual	work.	The	following	code	is	an	example	of	such	a	handler:

function	muteBtnClick()	{

3.	 We	will	update	our	button	with	the	microphone	state,	so	we	need	to	get	the	button	ID:

					var	btn	=	document.getElementById("mute_btn");

4.	 Before	we	can	decide	whether	we	want	to	mute	or	unmute	the	microphone,	we
should	be	able	to	know	its	actual	state—for	this	purpose,	we	will	use	the	isMicMuted
function:

					if	(isMicMuted())	{

5.	 Our	microphone	is	muted,	so	we	want	to	unmute	it	and	update	the	button	with	the
appropriate	state:

												muteMic(false);

												btn.innerHTML	=	"Mute	Mic";

						}	else	{

6.	 The	microphone	is	unmuted,	so	we	will	mute	it	and	update	the	button	as	well:

												muteMic(true);

												btn.innerHTML	=	"Unmute	Mic";

						}

}

7.	 In	the	handler,	we	will	use	the	isMicMuted	function	to	detect	whether	the	microphone
is	muted.	Let’s	implement	this	function	as	well:

function	isMicMuted()	{

					return	!(localStream.getAudioTracks()[0].enabled);}

8.	 Note	that	the	WebRTC	API	can	let	us	know	whether	the	audio	track	is	enabled,	but
our	function	returns	the	microphone’s	muted	value.	So,	we	will	invert	the	enabled
value	received	from	WebRTC	stack.

9.	 Finally,	we	need	to	implement	the	actual	mute/unmute	function:

function	muteMic	(mute)	{

					localStream.getAudioTracks()[0].enabled	=	!mute;

};

10.	 Here,	localStream	is	a	variable	that	contains	a	local	stream	object	received	after	a
successful	call	of	the	getUserMedia	WebRTC	API	function.

Note
In	this	function,	we	will	set	up	the	enabled	value,	but	the	function	gets	the	should	I	mute
the	microphone	parameter.	If	this	function	gets	true	as	an	argument,	it	should	set	false	to
the	enabled	property	of	the	audio	track.	This	is	why	we	will	invert	the	value	again,	as	we
do	it	in	the	isMicMuted	function.

How	it	works…
The	main	idea	is	to	get	an	appropriate	audio	track	of	the	local	media	stream,	and	to	change
its	state	to	disabled	or	enabled.	In	the	first	case,	the	track	will	be	muted	and	the	remote
peer	will	not	hear	your	voice.	Changing	the	state	can	be	done	in	real	time.

There’s	more…
If	you	have	more	than	one	audio	device,	the	getAudioTracks	function	might	return
several	audio	tracks	and	it	might	be	necessary	to	go	over	all	of	them:

var	audiotracks	=	localStream.getAudioTracks();

for	(var	i	=	0,	l	=	audiotracks.length;	i	<	l;	i++)

{

						audiotracks[i].enabled	=	false;

}

See	also
Refer	to	the	Pausing	a	video	recipe	to	see	a	similar	technique	applied	to	video
streams

Pausing	a	video
If	you’re	participating	in	a	video	conference	call,	you	might	want	to	temporarily	switch
your	video	camera	off	and	take	a	pause.	During	this	time,	your	remote	peer	shouldn’t	see
an	image	from	your	camera.	In	most	videoconferencing	software,	you	can	enable	or
disable	your	camera	during	the	call.	In	this	recipe,	we	will	implement	this	feature	for	a
WebRTC	application.

Getting	ready
For	this	recipe,	you	don’t	need	any	specific	preparations.	Just	create	a	basic	conferencing
WebRTC	application.

How	to	do	it…
Perform	the	following	steps:

1.	 We	need	to	add	a	Pause	Video	button	to	the	application’s	web	page:

<button	id="pause_video_btn"	onclick="pauseVideoBtnClick()">Pause	

Video</button>

2.	 You	also	should	set	up	a	handler	for	the	onclick	event	of	the	button:

function	pauseVideoBtnClick()	{

3.	 We	will	update	our	button	with	the	video	stream	state	(whether	it	is	paused	or	not),	so
we	need	to	get	the	button	ID:

					var	btn	=	document.getElementById("pause_video_btn");

4.	 Before	we	decide	whether	we	should	pause	the	stream	or	start	playing	it	back	again,
we	should	be	able	to	know	its	current	state—for	this	purpose,	we	will	use	the
isVideoPaused	function:

					if	(isVideoPaused())	{

5.	 If	the	video	stream	is	paused,	we	want	to	start	playing	it	back	and	update	the	button
with	the	new	state,	then	use	the	following	code:

												pauseVideo(false);

												btn.innerHTML	=	"Pause	Video";

						}	else	{

6.	 In	case	the	video	is	streaming,	we	will	pause	it	and	update	the	button	as	well:

												pauseVideo(true);

												btn.innerHTML	=	"Stream	Video";

						}

}

7.	 In	the	handler,	we	will	use	the	isVideoPaused	function	to	detect	whether	the	video
stream	is	paused.	Let’s	implement	this	function	as	well:

function	isVideoPaused()	{

					return	!(localStream.getVideoTracks()[0].enabled);

}

8.	 Note	that	the	WebRTC	API	can	let	us	know	if	a	certain	video	track	is	enabled	or	not,
but	our	function	returns	the	is	the	video	paused	state.	So,	we	will	invert	the	enabled
value	received	from	the	WebRTC	stack.

9.	 Finally,	we	need	to	implement	the	function	that	actually	puts	the	video	on	pause	and
vice	versa:

function	pauseVideo	(pause)	{

					localStream.getVideoTracks()[0].enabled	=	!pause;

};

10.	 Here,	localStream	is	a	variable	that	contains	a	local	stream	object	received	after	a

successful	call	of	the	getUserMedia	WebRTC	API	function.

Note
In	this	function,	we	will	set	up	the	enabled	value,	but	the	function	gets	the	should	I	put	the
video	on	pause	parameter.	So,	if	it	gets	true	as	an	argument,	it	should	set	the	enabled
property	of	the	video	track	to	false.

How	it	works…
The	root	idea	of	the	described	solution	is	to	get	an	appropriate	video	track	of	the	local
media	stream	and	to	change	its	state	to	disabled	or	enabled.	In	the	first	case,	the	video
track	will	be	paused,	streaming	will	be	stopped,	and	the	remote	peer	will	not	see	you.
Changing	the	state	can	be	done	in	real	time.

See	also
Refer	to	the	Muting	a	microphone	recipe	for	additional	details	regarding	the	usage	of
this	solution	to	work	with	audio	tracks

Taking	a	screenshot
Sometimes,	it	can	be	useful	to	be	able	to	take	screenshots	from	a	video	during
videoconferencing.	In	this	recipe,	we	will	implement	such	a	feature.

Getting	ready
No	specific	preparation	is	necessary	for	this	recipe.	You	can	take	any	basic	WebRTC
videoconferencing	application.	We	will	add	some	code	to	the	HTML	and	JavaScript	parts
of	the	application.

How	to	do	it…
Follow	these	steps:

1.	 First	of	all,	add	image	and	canvas	objects	to	the	web	page	of	the	application.	We	will
use	these	objects	to	take	screenshots	and	display	them	on	the	page:

<canvas	style="display:none;"	id="localCanvas"></canvas>

2.	 Next,	you	have	to	add	a	button	to	the	web	page.	After	clicking	on	this	button,	the
appropriate	function	will	be	called	to	take	the	screenshot	from	the	local	stream	video:

<button	onclick="btn_screenshot()"	id="btn_screenshot">Make	a	

screenshot</button>

3.	 Finally,	we	need	to	implement	the	screenshot	taking	function:

function	btn_screenshot()	{

var	v	=	document.getElementById("localVideo");

var	s	=	document.getElementById("localScreenshot");

var	c	=	document.getElementById("localCanvas");

var	ctx	=	c.getContext("2d");

4.	 Draw	an	image	on	the	canvas	object—the	image	will	be	taken	from	the	video	object:

ctx.drawImage(v,0,0);

5.	 Now,	take	reference	of	the	canvas,	convert	it	to	the	DataURL	object,	and	insert	the
value	into	the	src	option	of	the	image	object.	As	a	result,	the	image	object	will	show
us	the	taken	screenshot:

s.src	=	c.toDataURL('image/png');

}

6.	 That	is	it.	Save	the	file	and	open	the	application	in	a	web	browser.	Now,	when	you
click	on	the	Make	a	screenshot	button,	you	will	see	the	screenshot	in	the	appropriate
image	object	on	the	web	page.	You	can	save	the	screenshot	to	the	disk	using	right-
click	and	the	pop-up	menu.

How	it	works…
We	use	the	canvas	object	to	take	a	frame	of	the	video	object.	Then,	we	will	convert	the
canvas’	data	to	DataURL	and	assign	this	value	to	the	src	parameter	of	the	image	object.
After	that,	an	image	object	is	referred	to	the	video	frame,	which	is	stored	in	the	canvas.

See	also
Refer	to	the	Visualizing	a	microphone’s	sound	level	and	Muting	a	microphone	recipes
for	examples	regarding	how	to	work	with	audio	data

Streaming	media
This	recipe	covers	another	interesting	feature	that	can	be	implemented	using	the	WebRTC
stack:	streaming	prerecorded	media	from	one	peer	to	another	one.

Getting	ready
We	will	stream	a	prerecorded	WebM	file,	so	you	need	to	have	one.	You	can	download
demo	WebM	files	from	the	Internet.	For	example,	from	http://www.webmfiles.org/demo-
files/.

In	this	recipe,	we	will	create	two	files:	an	HTML	page	and	a	JavaScript	library.

Note
This	feature	doesn’t	work	on	the	local	filesystem.	To	implement	this	feature,	you	need	to
have	a	web	server	where	you	can	place	all	the	application	files,	and	where	the	application
is	accessible	to	the	customer.

A	signaling	server	is	also	necessary	for	this	recipe.	You	can	use	the	server	from	Chapter	1,
Peer	Connections.

http://www.webmfiles.org/demo-files/

How	to	do	it…
Open	your	text	editor,	and	let’s	create	the	HTML	page	by	following	the	given	steps:

1.	 Make	a	simple	HTML	header:

<!DOCTYPE	html>

<html>

<head>

				<title>My	WebRTC	file	media	streaming	demo</title>

2.	 Add	some	style	for	the	video	component:

<style	type="text/css">

				video	{

								width:	384px;

								height:	288px;

								border:	1px	solid	black;

								text-align:	center;

				}

</style>

3.	 Include	a	JavaScript	library	that	we	will	write	at	the	next	stage:

				<script	type="text/javascript"	src="myrtclib.js"></script>

4.	 Include	Google’s	adapter	to	keep	cross-browser	compatibility:

				<script	

src="https://rawgit.com/GoogleChrome/webrtc/master/samples/web/js/adapt

er.js"></script>

</head>

<body>

5.	 Create	div,	where	a	connection	link	will	be	published	for	peers:

<div	id="status"></div>

6.	 Create	a	video	element.	This	element	will	show	the	media	streamed	from	the	remote
peer:

<div><video	id="remotevideo"	autoplay="true"	controls="true"></video>

</div>

7.	 Create	a	file	choosing	component	and	a	button	that	will	start	the	streaming	process:

<div>

				file	you	want	to	stream	<input	type="file"	id="files"	

name="files[]"/>	then	press	<button	onclick="onSendBtnClick()">Start	

streaming	!</button>

</div>

<script>

				var	filelist;

8.	 Check	whether	the	web	browser	supports	components	and	technologies	that	we	use
for	this	feature:

				if	(window.File	&&	window.FileReader	&&	window.FileList	&&	

window.Blob)	{

								document.getElementById('files').addEventListener('change',	

handleFileSelect,	false);

9.	 Connect	to	the	signaling	server	and	initialize	our	WebRTC	library.	Note	that	you
should	use	an	actual	IP	and	port	of	the	signaling	server	where	it	is	running	on	your
machine.	By	default,	they	are	127.0.0.1	and	30001,	as	implemented	in	the	appropriate
recipes	of	Chapter	1,	Peer	Connections,	where	we	considered	signaling	servers:

								myrtclibinit("ws://127.0.0.1:30001",	

document.getElementById("remotevideo"));

				}	else	{

10.	 Create	an	alert	for	instances	when	the	web	browser	doesn’t	support	necessary
technologies:

								alert('The	File	APIs	are	not	fully	supported	in	this	

browser.');

				}

11.	 Implement	a	function	that	handles	the	file	choosing	component:

				function	handleFileSelect(evt)	{

								filelist	=	evt.target.files;

				};

12.	 Implement	a	function	that	starts	the	streaming	process.	Note	that	the	doStreamMedia
function	is	implemented	in	the	JavaScript	library	that	will	be	considered	in	the	next
stage:

				function	onSendBtnClick()	{

								doStreamMedia(filelist[0]);

				};

13.	 Implement	a	callback	function	that	constructs	a	connection	link	and	publishes	it	on
the	web	page:

				function	onRoomReceived(room)	{

								var	st	=	document.getElementById("status");

								st.innerHTML	=	"Now,	if	somebody	wants	to	join	you,	should	use	

this	link:	<a	href=\""+window.location.href+"?

room="+room+"\">"+window.location.href+"?room="+room+"";

				};

</script>	</body>	</html>

Next,	you	need	to	create	a	JavaScript	library	that	is	used	in	the	HTML	page	we	just
created.	Most	of	the	code	is	simple	and	identical	to	the	appropriate	parts	of	the	recipes
from	other	chapters.	Here,	we	will	cover	only	specific	moments	that	are	important	in	the
scope	of	the	feature;	known	pieces	of	code	will	be	skipped.	Note	that	the	full	source	code
for	this	recipe	is	supplied	along	with	this	book.

This	example	actively	uses	WebRTC	data	channels,	so	you	can	refer	to	the	Implementing	a
chat	using	data	channels	recipe	from	Chapter	1,	Peer	Connections,	for	more	details	on

this	topic.	Perform	the	following	steps	for	using	data	channels:

1.	 Declare	a	chunk	size.	While	streaming	the	prerecorded	media,	the	application	reads
the	media	file	chunk	by	chunk	and	sends	it	to	the	remote	peer.	So,	we	have	to	declare
the	chunk	size	value—1024,	in	this	particular	case.	You	can	play	with	other	values
and	see	how	they	affect	the	demo.	Don’t	use	too	low	or	too	high	values:

var	chunkSize	=	1024;

2.	 Declare	variables	that	will	handle	buffer	and	media	source.	The	buffer	is	a	structure
that	handles	raw	media	data	on	the	client	side	(where	the	media	will	be	streamed).
The	media	source	represents	a	WebRTC	object	that	will	be	tied	with	a	video	HTML
object:

var	receiverBuffer	=	null;

var	recvMediaSource	=	null;

3.	 Declare	a	variable	that	will	handle	the	HTML	video	object	where	the	streamed	media
will	be	shown:

var	remoteVideo	=	null;

4.	 Declare	an	array.	This	will	be	used	as	a	cache	to	temporarily	store	the	received
chunks	in	case	the	remote	peer	sends	them	faster	than	we	can	draw	them	on	the
video:

var	queue	=	[];

5.	 The	following	code	is	used	for	compatibility	between	Firefox	and	Chrome:

				window.MediaSource	=	window.MediaSource	||	

window.WebKitMediaSource;

6.	 Establish	a	new	peer-to-peer	data	channel:

				function	createDataChannel(role)	{

								try	{

												data_channel	=	

pc.createDataChannel("datachannel_"+room+role,	null);

								}	catch	(e)	{

												console.log('error	creating	data	channel	'	+	e);

												return;

								}

								initDataChannel();

				}

7.	 While	setting	a	session	description,	remove	bandwidth	limitations.	Some	web
browsers	(for	example,	some	versions	of	Chrome)	limit	bandwidth,	so	connection
performance	might	degrade.	To	avoid	that,	we	will	call	our	custom	setBandwidth
function,	which	removes	such	limitations:

function	setLocalAndSendMessage(sessionDescription)	{

								sessionDescription.sdp	=	setBandwidth(sessionDescription.sdp);

								pc.setLocalDescription(sessionDescription,	function()	{},	

failureCallback);

								sendMessage(sessionDescription);

};

8.	 Implement	the	setBandwidth	function.	It	sets	the	bandwidth	limit	to	a	higher	value
instead	of	the	default	one,	which	might	be	set	by	the	browser:

function	setBandwidth(sdp)	{

								sdp	=	sdp.replace(/a=mid:data\r\n/g	,	

'a=mid:data\r\nb=AS:1638400\r\n');

								return	sdp;

}

9.	 Change	the	onReceiveMessageCallback	function,	adopting	it	for	the	new	feature.
You	should	be	familiar	with	this	function	from	Chapter	1,	Peer	Connections.

				function	onReceiveMessageCallback(event)	{

								try	{

												var	msg	=	JSON.parse(event.data);

												if	(msg.type	===	'chunk')	{

																onChunk(msg.data);

												}

								}

								catch	(e)	{}

				};

10.	 Declare	the	auxiliary	variables	for	slicing	the	media	file:

				var	streamBlob	=	null;

				var	streamIndex	=	0;

				var	streamSize	=	0;

11.	 Implement	a	function	that	is	called	from	the	HTML	page.	This	function	reads	the
media	file,	slices	it	into	chunks,	and	sends	them	to	the	remote	peer:

				function	doStreamMedia(fileName)	{

								var	fileReader	=	new	window.FileReader();

								fileReader.onload	=	function	(e)	{

												streamBlob	=	new	window.Blob([new	

window.Uint8Array(e.target.result)]);

												streamSize	=	streamBlob.size;

												streamIndex	=	0;

												streamChunk();

								};

								fileReader.readAsArrayBuffer(fileName);

				}

				function	streamChunk()	{

								if	(streamIndex	>=	streamSize)	sendDataMessage({end:	true});

								var	fileReader	=	new	window.FileReader();

								fileReader.onload	=	function	(e)	{

												var	chunk	=	new	window.Uint8Array(e.target.result);

												streamIndex	+=	chunkSize;

												pushChunk(chunk);

												window.requestAnimationFrame(streamChunk);

								};

								fileReader.readAsArrayBuffer(streamBlob.slice(streamIndex,	

streamIndex	+	chunkSize));

				}

12.	 Implement	a	function	to	receive	media	data.	This	function	initializes	the	media
source	and	buffer	objects,	and	prepares	to	receive	media	chunks	that	are	sent	by	the
remote	peer:

				function	doReceiveStreaming()	{

								recvMediaSource	=	new	MediaSource();

								remoteVideo.src	=	window.URL.createObjectURL(recvMediaSource);

								recvMediaSource.addEventListener('sourceopen',	function	(e)	{

												remoteVideo.play();

13.	 We	will	use	the	WebM	media	file,	so	we	should	set	an	appropriate	media	type	for	the
media	buffer:

												receiverBuffer	=	

recvMediaSource.addSourceBuffer('video/webm;	codecs="vorbis,vp8"');

												receiverBuffer.addEventListener('error',	function(e)	{	

console.log('error:	'	+	receiverBuffer.readyState);	});

												receiverBuffer.addEventListener('abort',	function(e)	{	

console.log('abort:	'	+	receiverBuffer.readyState);	});

												receiverBuffer.addEventListener('update',	function(e)	{

																if	(queue.length	>	0	&&	!receiverBuffer.updating)	

doAppendStreamingData(queue.shift());

												});

												console.log('media	source	state:	',	this.readyState);

												doAppendStreamingData(queue.shift());

								},	false);

								recvMediaSource.addEventListener('sourceended',	function(e)	{	

console.log('sourceended:	'	+	this.readyState);	});

								recvMediaSource.addEventListener('sourceclose',	function(e)	{	

console.log('sourceclose:	'	+	this.readyState);	});

								recvMediaSource.addEventListener('error',	function(e)	{	

console.log('error:	'	+	this.readyState);	});

				};

14.	 The	following	function	actually	puts	the	media	data	into	the	media	buffer:

				function	doAppendStreamingData(data)	{

								var	uint8array	=	new	window.Uint8Array(data);

								receiverBuffer.appendBuffer(uint8array);

				};

15.	 Implement	a	function	that	will	stop	playing	back	the	media	when	the	media	data	is
over:

				function	doEndStreamingData()	{

								recvMediaSource.endOfStream();

				};

16.	 Create	a	function	to	send	media	data	chunks	to	the	remote	peer.	We	will	use	the
JSON	format	for	such	messages	to	declare	type	and	data	fields:

				function	pushChunk(data)	{

								var	msg	=	JSON.stringify({"type"	:	"chunk",	"data"	:	

Array.apply(null,	data)});

								sendDataMessage(msg);

				};

17.	 Implement	a	function	that	takes	the	received	chunks	and	processes	them:

				function	onChunk(data)	{

18.	 We	will	put	the	first	chunk	into	a	cache	and	call	the	doReceiveStreaming	function	to
prepare	media	components:

								chunks++;

								if	(chunks	==	1)	{

												console.log("first	frame");

												queue.push(data);

												doReceiveStreaming();

												return;

								}

								if	(data.end)	{

												console.log("last	frame");

												doEndStreamingData();

												return;

								}

19.	 In	case	the	cache	(queue)	is	not	empty	already,	we	will	put	the	newly	received	chunk
in	the	queue.	That’s	because	a	non-empty	queue	means	that	we’re	receiving	new
chunks	faster	than	we	can	process	and	show	them:

								if	(receiverBuffer.updating	||	queue.length	>	0)	

queue.push(data);

20.	 In	case	the	queue	is	empty,	we	can	call	the	doAppendStreamingData	function	that
will	put	the	chunk	in	the	media	buffer,	and	the	media	data	will	be	shown	on	the	page:

								else	doAppendStreamingData(data);

				};

So,	you	have	the	index	page	and	the	JavaScript	library	now.	Put	them	both	in	the	web
server	folder,	and	start	the	signaling	server.	Navigate	your	web	browser	to	where	the	demo
is	accessible.	Then	navigate	another	web	browser	(or	web	browser	tab)	to	the	link	at	the
top	of	the	page;	after	this,	peers	will	establish	a	direct	connection.

At	the	bottom	part	of	the	page,	you	should	see	something	similar	to	the	following:

Note	the	buttons	Choose	File	and	Start	streaming!.	Click	on	the	Choose	File	button	and
select	the	preloaded	WebM	media	file.	Then,	click	on	the	Start	streaming!	button.	The
web	browser	where	you	clicked	the	buttons	will	start	reading	the	media	file	and	streaming
it	to	the	second	browser.	So,	on	another	browser	window,	you	should	see	your	media	file
playing.

In	the	following	screenshot,	you	can	see	two	browser	windows:	Chrome	at	the	top	and
Firefox	at	the	back.	Here,	I’m	streaming	the	media	file	from	Chrome	to	Firefox.

Note	that	this	feature	is	in	the	beta	stage,	and	you	might	need	to	make	appropriate	changes
to	make	the	demo	work	on	other	browser	versions.

Another	important	note	is	that	Firefox	has	disabled	the	mediasource	component	by
default,	so	you	should	check	that	and	enable	it	before	using	this	recipe	with	Firefox.	To	do
that,	you	should	navigate	to	about:config,	look	for	the	media.mediasource.enabled
option	and	set	it	to	true.	You	can	see	this	solution	in	the	following	screenshot:

Note	that	Firefox	starts	playing	immediately	after	it	gets	the	first	bytes	of	the	media	data.

Chrome	will	wait	until	it	gets	all	the	media	data	and	only	then	will	start	playing	them.	This
behavior	might	be	changed	in	other	browser	versions.

How	it	works…
The	logic	of	this	feature	is	simple.	First	of	all,	peers	establish	a	direct	connection	and
create	data	channel.	Then,	the	sender	(streaming	peer)	acts	as	shown	in	the	following
steps:

1.	 Reads	the	whole	media	file	in	the	memory	and	creates	a	BLOB	object.
2.	 Reads	the	BLOB	object	chunk	by	chunk,	slices	them	into	smaller	blocks.
3.	 Sends	the	BLOB	object	chunk	by	chunk	to	the	remote	peer.
4.	 Repeats	step	3	until	the	end	of	the	media	file.

On	the	other	hand,	another	peer	performs	the	following	steps:

1.	 Creates	a	media	source	object.	Prepares	media	buffer.	Ties	the	objects	with	the	video
HTML	object	on	the	page.

2.	 Gets	chunks	from	the	remote	peer	and	puts	binary	data	in	the	media	buffer,	which	is
tied	to	the	video	object.

3.	 In	case	the	streamer	sends	data	faster	than	the	receiver	can	process	it,	the	receiver
uses	a	queue	to	temporarily	store	the	received	media	data.

4.	 Repeats	steps	2	and	3	until	there	is	some	media	data	received	from	the	remote	peer.

Thus,	the	receiver	plays	back	the	video	that	is	streamed	by	the	remote	peer.

See	also
This	recipe	actively	uses	WebRTC	data	channels.	In	the	code,	we	considered	only
streaming-related	important	parts	of	code.	For	codes	specific	to	data	channels,	refer
to	Chapter	1,	Peer	Connections,	where	this	topic	is	explained	in	a	more	detailed	way.

Index
A

Android	Developer	Tools	(ADT)	/	Installing	Android	Developer	Tools
Android	Virtual	Device	(AVD)	tool	/	Running	on	the	Android	simulator
Apache

configuring	/	Configuring	Apache
application

creating,	RTCMultiConnection	used	/	Creating	an	application	using
RTCMultiConnection,	How	to	do	it…,	How	it	works…,	There’s	more…

Application	Request	Routing	(ARR)	/	Configuring	IIS
Application	Request	Routing	3.0	/	Configuring	IIS
Asterisk

URL	/	There’s	more…

B
basic	configuration	items,	TURN

listening	IP	/	Installing	the	TURN	server
relay	IP	/	Installing	the	TURN	server
verbosity	/	Installing	the	TURN	server
anonymous	access	/	Installing	the	TURN	server

blur	effect
implementing	/	Implementing	the	blur	effect,	How	to	do	it…,	How	it	works…

Bria
URL	/	Installing	sipML5

brightness
working	with	/	Working	with	brightness,	How	to	do	it…,	How	it	works…

bweforvideo	/	Using	webrtc-internals

C
3CXPhone

URL	/	Installing	sipML5
calls

making	/	Making	and	answering	calls,	Making	a	call
answering	/	Making	and	answering	calls,	Answering	a	call,	There’s	more…
making,	from	web	page	/	Making	calls	from	a	web	page,	How	to	do	it…

certificate	authority	(CA)
about	/	Generating	a	self-signed	certificate

Chrome
about	/	Debugging	with	Chrome
WebRTC	application,	debugging	with	/	Debugging	with	Chrome,	Getting	ready
URL	/	Getting	ready

Chrome	mechanisms,	for	debugging	WebRTC	applications
webrtc-internals,	using	/	Using	webrtc-internals
logging	mechanism,	using	/	Using	Chrome	logging	mechanism,	There’s	more…

client-side	code,	TURN	server
implementing	/	Implementing	the	client-side	code

colors
working	with	/	Working	with	colors	and	grayscale,	How	to	do	it…
inverting	/	Inverting	colors,	How	to	do	it…,	How	it	works…

Conn-audio	object	/	Using	webrtc-internals
contrast

working	with	/	Working	with	contrast,	How	to	do	it…
customized	WebRTC	demo

building,	for	iOS	/	Building	a	customized	WebRTC	demo	for	iOS,	How	to	do
it…

custom	video	processing
about	/	Custom	video	processing,	How	to	do	it…

D
debugging

about	/	Introduction
demo	project

building,	for	iOS	simulator	/	Building	a	demo	project	for	a	iOS	simulator,	See
also

demo	WebM	files
URL	/	Getting	ready

DoS	(denial	of	service)	/	Configuring	a	firewall
dropped	shadow	effect

implementing	/	Implementing	the	dropped	shadow	effect,	How	to	do	it…
DtlsSrtpKeyAgreement	option	/	Using	webrtc-internals

E
Erlang

signaling	server,	building	/	Getting	ready,	How	to	do	it…
URL	/	Getting	ready

Express	Talk
URL	/	Installing	sipML5

F
Fast	Fourier	Transform	(FFT)	buffer	/	How	it	works…
filters

about	/	Introduction
combining	/	Combining	filters,	How	to	do	it…,	How	it	works…

Firebase
URL	/	How	it	works…

firewall
configuring	/	Configuring	a	firewall
configuring,	on	server	/	Configuring	a	firewall	on	a	server
configuring,	on	client	/	Configuring	a	firewall	on	a	client

FreeSWITCH
about	/	There’s	more…

G
getStats	WebRTC	API	function

about	/	How	to	do	it…
use	cases	/	How	to	do	it…

GLSurfaceView
bug,	fixing	with	/	Fixing	a	bug	with	GLSurfaceView

grayscale
working	with	/	Working	with	colors	and	grayscale,	How	to	do	it…

H
hue

working	with	/	Working	with	hue,	How	to	do	it…

I
IIS

configuring	/	Configuring	IIS,	There’s	more…
Interactive	Connectivity	Establishment	(ICE)

about	/	How	to	do	it…
/	Configuring	a	firewall	on	a	client
Internet	Information	Services	(IIS)	Resource	Kit	Tools	/	There’s	more…
inversion	of	colors	/	Inverting	colors

J
Java

signaling	server,	building	/	Building	a	signaling	server	in	Java,	How	to	do	it…
URL	/	Getting	ready

Java	7
about	/	Getting	ready

Java	Developer	Kit	(JDK)	/	Getting	ready
JSON

URL	/	Getting	ready
JsSIP

URL	/	There’s	more…

M
media

streaming	/	Streaming	media,	How	to	do	it…,	How	it	works…
microphone

muting	/	Muting	a	microphone,	How	to	do	it…
microphone	level

visualizing	/	Visualizing	a	microphone’s	sound	level,	Getting	ready,	How	to	do
it…

mtr	/	There’s	more…
multiuser	conference

creating,	WebRTCO	used	/	Creating	a	multiuser	conference	using	WebRTCO,
How	to	do	it…,	How	it	works…

N
native	application

about	/	Introduction
building	/	Introduction

native	demo	WebRTC	application,	for	Android
compiling	/	Compiling	and	running	a	demo	for	Android
system,	preparing	/	Preparing	the	system
Oracle	JDK,	installing	/	Installing	Oracle	JDK
WebRTC	source	code,	obtaining	/	Getting	the	WebRTC	source	code
Android	Developer	Tools,	installing	/	Installing	Android	Developer	Tools,	How
to	do	it…
running,	on	Android	simulator	/	Running	on	the	Android	simulator
bug,	fixing	with	GLSurfaceView	/	Fixing	a	bug	with	GLSurfaceView
running,	on	physical	Android	device	/	Running	on	a	physical	Android	device

Network	Address	Translation	(NAT)	/	Configuring	a	firewall	on	a	client
Network	Address	Translator	(NAT)	/	How	to	do	it…
Nginx

configuring	/	Configuring	Nginx
Numb

about	/	There’s	more…
URL	/	There’s	more…

O
opacity	filter

using	/	Using	the	opacity	filter,	How	to	do	it…
OpenTok

about	/	Using	OpenTok	to	create	a	WebRTC	application
used,	for	creating	WebRTC	application	/	Using	OpenTok	to	create	a	WebRTC
application,	Getting	ready,	How	to	do	it…,	How	it	works…

OpenWebRTC	library
building	/	Building	an	OpenWebRTC	library,	Getting	ready,	There’s	more…

original	Google	WebRTC	native	demo	application
compiling	/	Compiling	and	running	an	original	demo	for	iOS
demo	project,	building	for	iOS	device	/	Building	a	demo	project	for	an	iOS
device
demo	project,	building	for	iOS	simulator	/	Building	a	demo	project	for	an	iOS
simulator

P
peer-to-peer	private	messaging	service

implementing,	data	channels	used	/	Implementing	a	chat	using	data	channels,
Getting	ready
main	HTML	page,	creating	/	How	to	do	it…,	Creating	the	main	HTML	page	of
the	application
JavaScript	helper	library,	creating	/	Creating	the	JavaScript	helper	library
working	/	How	it	works…
implementing,	signaling	server	used	/	Implementing	a	chat	using	a	signaling
server,	How	to	do	it…,	There’s	more…

peer	connections
signaling	server,	building	in	Erlang	/	Building	a	signaling	server	in	Erlang,	How
to	do	it…
signaling	server,	building	in	Java	/	Building	a	signaling	server	in	Java,	How	to
do	it…
calls,	making	/	Getting	ready
calls,	answering	/	Getting	ready

PeerJS
used,	for	developing	simple	WebRTC	chat	/	Developing	a	simple	WebRTC	chat
using	PeerJS,	How	to	do	it…,	How	it	works…

public	key	infrastructure	(PKI)
about	/	Generating	a	self-signed	certificate
URL	/	Generating	a	self-signed	certificate

R
rfc5766-turn-server

about	/	Getting	ready
root	certificates

about	/	Generating	a	self-signed	certificate
rtc.io

used,	for	creating	simple	video	chat	/	Making	a	simple	video	chat	with	rtc.io,
How	to	do	it…

RTCMultiConnection
used,	for	creating	application	/	Creating	an	application	using
RTCMultiConnection,	How	to	do	it…,	How	it	works…

S
saturation

working	with	/	Working	with	saturation,	How	to	do	it…
Sawbuck

about	/	Using	Chrome	logging	mechanism
URL	/	Using	Chrome	logging	mechanism

screenshot
capturing	/	Taking	a	screenshot,	How	to	do	it…

Secure	Sockets	Layer	(SSL)	/	Getting	ready
security

about	/	Introduction
self-signed	certificate

generating	/	Generating	a	self-signed	certificate,	Getting	ready,	How	to	do	it…
sepia	filter

using	/	Using	the	sepia	filter,	How	to	do	it…,	How	it	works…
server-side	code,	TURN	server

implementing	/	Implementing	the	server-side	code,	How	it	works…
session	description

about	/	Introduction
Session	Description	Protocol	(SDP)

about	/	How	to	do	it…
signaling	server

about	/	Introduction
building	/	Introduction
building,	in	Erlang	/	Building	a	signaling	server	in	Erlang,	How	to	do	it…
building,	in	Java	/	Building	a	signaling	server	in	Java,	How	to	do	it…

signaling	stage
about	/	Introduction

simple	video	chat
creating,	with	rtc.io	/	Making	a	simple	video	chat	with	rtc.io,	How	to	do	it…

SimpleWebRTC
about	/	Building	a	video	conference	using	SimpleWebRTC
used,	for	building	video	conference	/	Getting	ready,	How	to	do	it…,	How	it
works…

simple	WebRTC	chat
developing,	PeerJS	used	/	Developing	a	simple	WebRTC	chat	using	PeerJS,
How	to	do	it…,	How	it	works…

SIP.js
URL	/	There’s	more…

sipML5
about	/	Installing	sipML5,	There’s	more…
installing	/	Installing	sipML5

Software	Development	Kit	(SDK)	/	Introduction

Spring	4
about	/	There’s	more…

statistics	API
about	/	Introduction

STUN
about	/	Introduction
configuring	/	Configuring	and	using	STUN,	How	to	do	it…
using	/	How	it	works…

T
tcpdump	/	There’s	more…
Telephone

URL	/	Installing	sipML5
Transport	Layer	Security	(TLS)

about	/	Getting	ready
TURN

about	/	Introduction
configuring	/	Configuring	and	using	TURN
installing	/	Installing	the	TURN	server
basic	configuration	items	/	Installing	the	TURN	server
using,	in	WebRTC	application	/	Using	TURN	in	WebRTC	application
debugging	/	Debugging	TURN,	How	to	do	it…

TURN	REST	API	/	How	it	works…
TurnServer

about	/	There’s	more…
URL	/	There’s	more…

TURN	server,	with	authentication
configuring	/	Configuring	a	TURN	server	with	authentication,	Getting	ready
client-side	code,	implementing	/	Implementing	the	client-side	code
server-side	code,	implementing	/	Implementing	the	server-side	code,	How	it
works…,	There’s	more…
username	/	How	it	works…
password	/	How	it	works…
TTL	/	How	it	works…
URIs	/	How	it	works…

U
Use	Host	GPU	option	/	Running	on	the	Android	simulator

V
video

pausing	/	Pausing	a	video,	How	to	do	it…
video	conference

building,	SimpleWebRTC	used	/	Building	a	video	conference	using
SimpleWebRTC,	How	to	do	it…,	How	it	works…

W
Web	Platform	Installer	(WebPI)	module	/	Configuring	IIS
WebRTC

security	/	Introduction
webrtc-internals

about	/	Using	webrtc-internals
WebRTC	application

debugging,	with	Chrome	/	Debugging	with	Chrome,	Getting	ready
debugging,	with	Wireshark	/	Debugging	using	Wireshark,	How	to	do	it…
creating,	OpenTok	used	/	Using	OpenTok	to	create	a	WebRTC	application,
Getting	ready,	How	to	do	it…,	How	it	works…

WebRTC	functions,	supported	by	browser
detecting	/	Detecting	WebRTC	functions	supported	by	a	browser,	How	it
works…

WebRTC	integration
about	/	Introduction

WebRTC	integration,	with	Asterisk
performing	/	Integrating	WebRTC	with	Asterisk
libSRTP,	installing	/	Installing	libSRTP
Asterisk,	installing	/	Installing	Asterisk
working	/	How	it	works…
about	/	There’s	more…

WebRTC	integration,	with	FreeSWITCH
performing	/	Integrating	WebRTC	with	FreeSWITCH
FreeSWITCH,	installing	/	Installing	FreeSWITCH
WebRTC,	enabling	/	Enabling	WebRTC
FreeSWITCH,	starting	/	Starting	FreeSWITCH

WebRTC	integration,	with	web	cameras
performing	/	Integration	of	WebRTC	with	web	cameras,	Getting	ready
web	cam,	configuring	/	Configuring	the	webcam
WebRTC	media	server	/	Installing	WebRTC	media	server

WebRTC	media	server
implementing	/	Time	for	magic,	How	it	works…

WebRTCO
about	/	Creating	a	multiuser	conference	using	WebRTCO
used,	for	creating	multiuser	conference	/	Getting	ready,	How	to	do	it…,	How	it
works…

WebRTC	standard	draft
URL	/	There’s	more…

WebRTC	statistics	API
working	with	/	Working	with	a	WebRTC	statistics	API,	How	to	do	it…,	How	it
works…
estimated	bandwidth,	checking	/	Checking	estimated	bandwidth

packet	loss,	checking	/	Checking	packet	loss
web	server

configuring	/	Configuring	a	web	server	to	work	over	HTTPS,	How	to	do	it…
WebSockets

about	/	Configuring	a	WebSockets	proxy	on	the	web	server
WebSockets	proxy	configuration

on	web	server	/	Configuring	a	WebSockets	proxy	on	the	web	server,	How	it
works…
Nginx,	configuring	/	Configuring	Nginx
Apache,	configuring	/	Configuring	Apache
IIS,	configuring	/	Configuring	IIS

Wireshark
about	/	Debugging	using	Wireshark
WebRTC	application,	debugging	with	/	Debugging	using	Wireshark,	How	to	do
it…
URL	/	Getting	ready

X
X-Lite

URL	/	Installing	sipML5

Z
Zoiper

URL	/	Installing	sipML5

	WebRTC Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Peer Connections
	Introduction
	Building a signaling server in Erlang
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Building a signaling server in Java
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Detecting WebRTC functions supported by a browser
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Making and answering calls
	Getting ready
	How to do it…
	Making a call
	Answering a call
	How it works…
	There's more…
	See also
	Implementing a chat using data channels
	Getting ready
	How to do it…
	Creating the main HTML page of the application
	Creating the JavaScript helper library
	How it works…
	There's more…
	See also
	Implementing a chat using a signaling server
	How to do it…
	How it works…
	There's more…
	See also
	Configuring and using STUN
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring and using TURN
	Getting ready
	How to do it…
	Installing the TURN server
	Using TURN in WebRTC application
	How it works…
	There's more…
	See also
	2. Supporting Security
	Introduction
	Generating a self-signed certificate
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring a TURN server with authentication
	Getting ready
	How to do it…
	Implementing the client-side code
	Implementing the server-side code
	How it works…
	There's more…
	See also
	Configuring a web server to work over HTTPS
	Getting ready
	How to do it…
	Configuring Nginx
	Configuring Apache
	Configuring IIS
	There's more…
	See also
	Configuring a WebSockets proxy on the web server
	Getting ready
	How to do it…
	Configuring Nginx
	Configuring Apache
	Configuring IIS
	How it works…
	There's more…
	See also
	Configuring a firewall
	Getting ready
	How to do it…
	Configuring a firewall on a server
	Configuring a firewall on a client
	See also
	3. Integrating WebRTC
	Introduction
	Integrating WebRTC with Asterisk
	Getting ready
	How to do it…
	Installing libSRTP
	Installing Asterisk
	How it works…
	There's more…
	See also
	Integrating WebRTC with FreeSWITCH
	Getting ready
	How to do it…
	Installing FreeSWITCH
	Enabling WebRTC
	Starting FreeSWITCH
	How it works…
	There's more…
	See also
	Making calls from a web page
	Getting ready
	How to do it…
	Installing sipML5
	How it works…
	There's more…
	See also
	Integration of WebRTC with web cameras
	Getting ready
	How to do it…
	Configuring the webcam
	Installing WebRTC media server
	Time for magic
	How it works…
	There's more…
	4. Debugging a WebRTC Application
	Introduction
	Working with a WebRTC statistics API
	Getting ready
	How to do it…
	Checking estimated bandwidth
	Checking packet loss
	How it works…
	There's more…
	See also
	Debugging with Chrome
	Getting ready
	How to do it…
	Using webrtc-internals
	Using Chrome logging mechanism
	How it works…
	There's more…
	See also
	Debugging TURN
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Debugging using Wireshark
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	5. Working with Filters
	Introduction
	Working with colors and grayscale
	How to do it…
	How it works…
	Working with brightness
	How to do it…
	How it works…
	Working with contrast
	How to do it…
	How it works…
	Working with saturation
	How to do it…
	How it works…
	Working with hue
	How to do it…
	How it works…
	Using the sepia filter
	How to do it…
	How it works…
	Using the opacity filter
	How to do it…
	How it works…
	Inverting colors
	How to do it…
	How it works…
	Implementing the blur effect
	How to do it…
	How it works…
	Implementing the dropped shadow effect
	How to do it…
	How it works…
	Combining filters
	How to do it…
	How it works…
	Custom video processing
	How to do it…
	How it works…
	6. Native Applications
	Introduction
	Building a customized WebRTC demo for iOS
	Getting ready
	How to do it…
	There's more…
	Building a demo project for a iOS simulator
	See also
	Compiling and running an original demo for iOS
	Getting ready
	How to do it…
	Building a demo project for an iOS device
	Building a demo project for an iOS simulator
	There's more…
	See also
	Compiling and running a demo for Android
	Getting ready
	Preparing the system
	Installing Oracle JDK
	Getting the WebRTC source code
	Installing Android Developer Tools
	How to do it…
	Running on the Android simulator
	Fixing a bug with GLSurfaceView
	Running on a physical Android device
	There's more…
	See also
	Building an OpenWebRTC library
	Getting ready
	How to do it…
	There's more…
	7. Third-party Libraries
	Introduction
	Building a video conference using SimpleWebRTC
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating an application using RTCMultiConnection
	Getting ready
	How to do it…
	How it works…
	There's more…
	Developing a simple WebRTC chat using PeerJS
	Getting ready
	How to do it…
	How it works…
	There's more…
	Making a simple video chat with rtc.io
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using OpenTok to create a WebRTC application
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a multiuser conference using WebRTCO
	Getting ready
	How to do it…
	How it works…
	There's more…
	8. Advanced Functions
	Introduction
	Visualizing a microphone's sound level
	Getting ready
	How to do it…
	How it works…
	See also
	Muting a microphone
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Pausing a video
	Getting ready
	How to do it…
	How it works…
	See also
	Taking a screenshot
	Getting ready
	How to do it…
	How it works…
	See also
	Streaming media
	Getting ready
	How to do it…
	How it works…
	See also
	Index

