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Preface

Web Real-Time Communication (WebRTC) is a new standard that lets browsers com‐
municate in real time using a peer-to-peer architecture. It is about secure, consent-based,
audio/video (and data) peer-to-peer communication between HTML5 browsers. This
is a disruptive evolution in the web applications world, since it enables, for the very first
time, web developers to build real-time multimedia applications with no need for pro‐
prietary plug-ins.

WebRTC puts together two historically separated camps, associated, respectively, with
telecommunications on one side and web development on the other. Those who do not
come from the telecommunications world might be discouraged by the overwhelming
quantity of information to be aware of in order to understand all of the nits and bits
associated with real-time transmission over the Internet. On the other hand, for those
who are not aware of the latest developments in the field of web programming (both
client and server side), it might feel uncomfortable to move a legacy VoIP application
to the browser.

The aim of this book is to facilitate both communities, by providing developers with a
learn-by-example description of the WebRTC APIs sitting on top of the most advanced
real-time communication protocols. It targets a heterogeneous readership, made not
only of web programmers, but also of real-time applications architects who have some
knowledge of the inner workings of the Internet protocols and communication para‐
digms. Different readers can enter the book at different points. They will be provided
with both some theoretical explanation and a handy set of pre-tailored exercises they
can properly modify and apply to their own projects.

We will first of all describe, at a high level of abstraction, the entire development cycle
associated with WebRTC. Then, we will walk hand in hand with our readers and build
a complete WebRTC application. We will first disregard all networking aspects related
to the construction of a signaling channel between any pair of browser peers aiming to
communicate. In this first phase, we will illustrate how you can write code to query (and
gain access to) local multimedia resources like audio and video devices and render them
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within an HTML5 browser window. We will then discuss how the obtained media
streams can be associated with a PeerConnection object representing an abstraction for
a logical connection to a remote peer. During these first steps, no actual communication
channel with a remote peer will be instantiated. All of the code samples will be run on
a single node and will just help the programmer familiarize with the WebRTC APIs.
Once done with this phase, we will briefly discuss the various choices related to the setup
of a proper signaling channel allowing two peers to exchange (and negotiate) informa‐
tion about a real-time multimedia session between each other. For this second phase,
we will unavoidably need to take a look at the server side. The running example will be
purposely kept as simple as possible. It will basically represent a bare-bones piece of
code focusing just on the WebRTC APIs and leave aside all stylistic aspects associated
with the look and feel of the final application. We believe that readers will quickly learn
how to develop their own use cases, starting from the sample code provided in the book.

The book is structured as follows:
Chapter 1, Introduction

Covers why VoIP (Voice over IP) is shifting from standalone functionality to a
browser component. It introduces the existing HTML5 features used in WebRTC
and how they fit with the architectural model of real-time communication, the so-
called Browser RTC Trapezoid.

Chapter 2, Handling Media in the Browser
Focuses on the mechanisms allowing client-side web applications (typically written
in a mix of HTML5 and JavaScript) to interact with web browsers through the
WebRTC API. It illustrates how to query browser capabilities, receive browser-
generated notifications, and apply the application-browser API in order to properly
handle media in the browser.

Chapter 3, Building the Browser RTC Trapezoid: A Local Perspective
Introduces the RTCPeerConnection API, whose main purpose is to transfer stream‐
ing data back and forth between browser peers, by providing an abstraction for a
bidirectional multimedia communication channel.

Chapter 4, The Need for a Signaling Channel
Focuses on the creation of an out-of-band signaling channel between WebRTC-
enabled peers. Such a channel proves fundamental, at session setup time, in order
to allow for the exchanging of both session descriptions and network reachability
information.

Chapter 5, Putting It All Together: Your First WebRTC System from Scratch
Concludes the guided WebRTC tour by presenting a complete example. The readers
will learn how to create a basic yet complete Web Real-Time Communication sys‐
tem from scratch, using the API functionality described in the previous chapters.
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Chapter 6, An Introduction to WebRTC API’s Advanced Features
Explores advanced aspects of the WebRTC API and considers the future.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/spromano/WebRTC_Book.
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This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Real-Time Communication with WebRTC
by Salvatore Loreto and Simon Pietro Romano (O’Reilly). Copyright 2014 Salvatore
Loreto and Prof. Simon Pietro Romano, 978-1-449-37187-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.
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Sebastopol, CA 95472
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/realtime-comm-webRTC.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.
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Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book wouldn’t be here without the efforts of many people. The authors gratefully
acknowledge some of the many here, in no particular order:

• The people at O’Reilly, with a special mention to Allyson MacDonald and Simon
St.Laurent, who have enthusiastically supported our book proposal and invested
considerable time and effort in bringing this manuscript to market. Allyson, in
particular, has been closely involved in creating the final pages you read.

• The reviewers, who provided valuable feedback during the writing process: Lorenzo
Miniero, Irene Ruengeler, Michael Tuexen, and Xavier Marjou. They all did a great
job and provided us with useful hints and a thorough technical review of the final
manuscript before it went to press.

• The engineers at both the IETF and the W3C who are dedicating huge efforts to
making the WebRTC/RtcWeb initiatives become a reality.

• WebRTC early adopters, whose precious feedback and comments constantly help
improve the specs.

Preface | xi





CHAPTER 1

Introduction

Web Real-Time Communication (WebRTC) is a new standard and industry effort that
extends the web browsing model. For the first time, browsers are able to directly ex‐
change real-time media with other browsers in a peer-to-peer fashion.

The World Wide Web Consortium (W3C) and the Internet Engineering Task Force
(IETF) are jointly defining the JavaScript APIs (Application Programming Interfaces),
the standard HTML5 tags, and the underlying communication protocols for the setup
and management of a reliable communication channel between any pair of next-
generation web browsers.

The standardization goal is to define a WebRTC API that enables a web application
running on any device, through secure access to the input peripherals (such as webcams
and microphones), to exchange real-time media and data with a remote party in a peer-
to-peer fashion.

Web Architecture
The classic web architecture semantics are based on a client-server paradigm, where
browsers send an HTTP (Hypertext Transfer Protocol) request for content to the web
server, which replies with a response containing the information requested.

The resources provided by a server are closely associated with an entity known by a URI
(Uniform Resource Identifier) or URL (Uniform Resource Locator).

In the web application scenario, the server can embed some JavaScript code in the HTML
page it sends back to the client. Such code can interact with browsers through standard
JavaScript APIs and with users through the user interface.
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WebRTC Architecture
WebRTC extends the client-server semantics by introducing a peer-to-peer communi‐
cation paradigm between browsers. The most general WebRTC architectural model (see
Figure 1-1) draws its inspiration from the so-called SIP (Session Initiation Protocol)
Trapezoid (RFC3261).

Figure 1-1. The WebRTC Trapezoid

In the WebRTC Trapezoid model, both browsers are running a web application, which
is downloaded from a different web server. Signaling messages are used to set up and
terminate communications. They are transported by the HTTP or WebSocket protocol
via web servers that can modify, translate, or manage them as needed. It is worth noting
that the signaling between browser and server is not standardized in WebRTC, as it is
considered to be part of the application (see “Signaling” on page 5). As to the data path,
a PeerConnection allows media to flow directly between browsers without any inter‐
vening servers. The two web servers can communicate using a standard signaling pro‐
tocol such as SIP or Jingle (XEP-0166). Otherwise, they can use a proprietary signaling
protocol.

The most common WebRTC scenario is likely to be the one where both browsers are
running the same web application, downloaded from the same web page. In this case
the Trapezoid becomes a Triangle (see Figure 1-2).

2 | Chapter 1: Introduction



Figure 1-2. The WebRTC Triangle

WebRTC in the Browser
A WebRTC web application (typically written as a mix of HTML and JavaScript) inter‐
acts with web browsers through the standardized WebRTC API, allowing it to properly
exploit and control the real-time browser function (see Figure 1-3). The WebRTC web
application also interacts with the browser, using both WebRTC and other standardized
APIs, both proactively (e.g., to query browser capabilities) and reactively (e.g., to receive
browser-generated notifications).

The WebRTC API must therefore provide a wide set of functions, like connection man‐
agement (in a peer-to-peer fashion), encoding/decoding capabilities negotiation, se‐
lection and control, media control, firewall and NAT element traversal, etc.

Network Address Translator (NAT)
The Network Address Translator (NAT) (RFC1631) has been standardized to alleviate
the scarcity and depletion of IPv4 addresses.

A NAT device at the edge of a private local network is responsible for maintaining a
table mapping of private local IP and port tuples to one or more globally unique public
IP and port tuples. This allows the local IP addresses behind a NAT to be reused among
many different networks, thus tackling the IPv4 address depletion issue.
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Figure 1-3. Real-time communication in the browser

The design of the WebRTC API does represent a challenging issue. It envisages that a
continuous, real-time flow of data is streamed across the network in order to allow direct
communication between two browsers, with no further intermediaries along the path.
This clearly represents a revolutionary approach to web-based communication.

Let us imagine a real-time audio and video call between two browsers. Communication,
in such a scenario, might involve direct media streams between the two browsers, with
the media path negotiated and instantiated through a complex sequence of interactions
involving the following entities:

• The caller browser and the caller JavaScript application (e.g., through the mentioned
JavaScript API)

• The caller JavaScript application and the application provider (typically, a web
server)

• The application provider and the callee JavaScript application
• The callee JavaScript application and the callee browser (again through the

application-browser JavaScript API)
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1. DTLS is actually used for key derivation, while SRTP is used on the wire. So, the packets on the wire are not
DTLS (except for the initial handshake).

Signaling
The general idea behind the design of WebRTC has been to fully specify how to control
the media plane, while leaving the signaling plane as much as possible to the application
layer. The rationale is that different applications may prefer to use different standardized
signaling protocols (e.g., SIP or eXtensible Messaging and Presence Protocol [XMPP])
or even something custom.

Session description represents the most important information that needs to be ex‐
changed. It specifies the transport (and Interactive Connectivity Establishment [ICE])
information, as well as the media type, format, and all associated media configuration
parameters needed to establish the media path.

Since the original idea to exchange session description information in the form of Ses‐
sion Description Protocol (SDP) “blobs” presented several shortcomings, some of which
turned out to be really hard to address, the IETF is now standardizing the JavaScript
Session Establishment Protocol (JSEP). JSEP provides the interface needed by an ap‐
plication to deal with the negotiated local and remote session descriptions (with the
negotiation carried out through whatever signaling mechanism might be desired), to‐
gether with a standardized way of interacting with the ICE state machine.

The JSEP approach delegates entirely to the application the responsibility for driving
the signaling state machine: the application must call the right APIs at the right times,
and convert the session descriptions and related ICE information into the defined mes‐
sages of its chosen signaling protocol, instead of simply forwarding to the remote side
the messages emitted from the browser.

WebRTC API
The W3C WebRTC 1.0 API allows a JavaScript application to take advantage of the
novel browser’s real-time capabilities. The real-time browser function (see Figure 1-3)
implemented in the browser core provides the functionality needed to establish the
necessary audio, video, and data channels. All media and data streams are encrypted
using DTLS.1

Signaling | 5



Datagram Transport Layer Security (DTLS)
The DTLS (Datagram Transport Layer Security) protocol (RFC6347) is designed to
prevent eavesdropping, tampering, or message forgery to the datragram transport of‐
fered by the User Datagram Protocol (UDP). The DTLS protocol is based on the stream-
oriented Transport Layer Security (TLS) protocol and is intended to provide similar
security guarantees.

The DTLS handshake performed between two WebRTC clients re‐
lies on self-signed certificates. As a result, the certificates themselves
cannot be used to authenticate the peer, as there is no explicit chain
of trust to verify.

To ensure a baseline level of interoperability between different real-time browser func‐
tion implementations, the IETF is working on selecting a minimum set of mandatory
to support audio and video codecs. Opus (RFC6716) and G.711 have been selected as
the mandatory to implement audio codecs. However, at the time of this writing, IETF
has not yet reached a consensus on the mandatory to implement video codecs.

The API is being designed around three main concepts: MediaStream, PeerConnec
tion, and DataChannel.

MediaStream
A MediaStream is an abstract representation of an actual stream of data of audio
and/or video. It serves as a handle for managing actions on the media stream, such as
displaying the stream’s content, recording it, or sending it to a remote peer. A Media
Stream may be extended to represent a stream that either comes from (remote stream)
or is sent to (local stream) a remote node.

A LocalMediaStream represents a media stream from a local media-capture device (e.g.,
webcam, microphone, etc.). To create and use a local stream, the web application must
request access from the user through the getUserMedia() function. The application
specifies the type of media—audio or video—to which it requires access. The devices
selector in the browser interface serves as the mechanism for granting or denying access.
Once the application is done, it may revoke its own access by calling the stop() function
on the LocalMediaStream.
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Media-plane signaling is carried out of band between the peers; the Secure Real-time
Transport Protocol (SRTP) is used to carry the media data together with the RTP Control
Protocol (RTCP) information used to monitor transmission statistics associated with
data streams. DTLS is used for SRTP key and association management.

As Figure 1-4 shows, in a multimedia communication each medium is typically carried
in a separate RTP session with its own RTCP packets. However, to overcome the issue
of opening a new NAT hole for each stream used, the IETF is currently working on the
possibility of reducing the number of transport layer ports consumed by RTP-based
real-time applications. The idea is to combine (i.e., multiplex) multimedia traffic in a
single RTP session.

Figure 1-4. The WebRTC protocol stack

PeerConnection
A PeerConnection allows two users to communicate directly, browser to browser. It
then represents an association with a remote peer, which is usually another instance of
the same JavaScript application running at the remote end. Communications are coor‐
dinated via a signaling channel provided by scripting code in the page via the web server,
e.g., using XMLHttpRequest or WebSocket. Once a peer connection is established, me‐
dia streams (locally associated with ad hoc defined MediaStream objects) can be sent
directly to the remote browser.
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STUN and TURN
The Session Traversal Utilities for NAT (STUN) protocol (RFC5389) allows a host ap‐
plication to discover the presence of a network address translator on the network, and
in such a case to obtain the allocated public IP and port tuple for the current connection.
To do so, the protocol requires assistance from a configured, third-party STUN server
that must reside on the public network.

The Traversal Using Relays around NAT (TURN) protocol (RFC5766) allows a host
behind a NAT to obtain a public IP address and port from a relay server residing on the
public Internet. Thanks to the relayed transport address, the host can then receive media
from any peer that can send packets to the public Internet.

The PeerConnection mechanism uses the ICE protocol (see “ICE Candidate Exchang‐
ing” on page 117) together with the STUN and TURN servers to let UDP-based media
streams traverse NAT boxes and firewalls. ICE allows the browsers to discover enough
information about the topology of the network where they are deployed to find the best
exploitable communication path. Using ICE also provides a security measure, as it pre‐
vents untrusted web pages and applications from sending data to hosts that are not
expecting to receive them.

Each signaling message is fed into the receiving PeerConnection upon arrival. The APIs
send signaling messages that most applications will treat as opaque blobs, but which
must be transferred securely and efficiently to the other peer by the web application via
the web server.

DataChannel
The DataChannel API is designed to provide a generic transport service allowing web
browsers to exchange generic data in a bidirectional peer-to-peer fashion.

The standardization work within the IETF has reached a general consensus on the usage
of the Stream Control Transmission Protocol (SCTP) encapsulated in DTLS to handle
nonmedia data types (see Figure 1-4).

The encapsulation of SCTP over DTLS over UDP together with ICE provides a NAT
traversal solution, as well as confidentiality, source authentication, and integrity pro‐
tected transfers. Moreover, this solution allows the data transport to interwork smoothly
with the parallel media transports, and both can potentially also share a single transport-
layer port number. SCTP has been chosen since it natively supports multiple streams
with either reliable or partially reliable delivery modes. It provides the possibility of
opening several independent streams within an SCTP association towards a peering
SCTP endpoint. Each stream actually represents a unidirectional logical channel
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providing the notion of in-sequence delivery. A message sequence can be sent either
ordered or unordered. The message delivery order is preserved only for all ordered
messages sent on the same stream. However, the DataChannel API has been designed
to be bidirectional, which means that each DataChannel is composed as a bundle of an
incoming and an outgoing SCTP stream.

The DataChannel setup is carried out (i.e., the SCTP association is created) when the
CreateDataChannel() function is called for the first time on an instantiated PeerCon
nection object. Each subsequent call to the CreateDataChannel() function just creates
a new DataChannel within the existing SCTP association.

A Simple Example
Alice and Bob are both users of a common calling service. In order to communicate,
they have to be simultaneously connected to the web server implementing the calling
service. Indeed, when they point their browsers to the calling service web page, they
will download an HTML page containing a JavaScript that keeps the browser connected
to the server via a secure HTTP or WebSocket connection.

When Alice clicks on the web page button to start a call with Bob, the JavaScript in‐
stantiates a PeerConnection object. Once the PeerConnection is created, the JavaScript
code on the calling service side needs to set up media and accomplishes such a task
through the MediaStream function. It is also necessary that Alice grants permission to
allow the calling service to access both her camera and her microphone.

In the current W3C API, once some streams have been added, Alice’s browser, enriched
with JavaScript code, generates a signaling message. The exact format of such a message
has not been completely defined yet. We do know it must contain media channel in‐
formation and ICE candidates, as well as a fingerprint attribute binding the communi‐
cation to Alice’s public key. This message is then sent to the signaling server (e.g., by
XMLHttpRequest or by WebSocket).

Figure 1-5 sketches a typical call flow associated with the setup of a real-time, browser-
enabled communication channel between Alice and Bob.

The signaling server processes the message from Alice’s browser, determines that this
is a call to Bob, and sends a signaling message to Bob’s browser.

The JavaScript on Bob’s browser processes the incoming message, and alerts Bob. Should
Bob decide to answer the call, the JavaScript running in his browser would then in‐
stantiate a PeerConnection related to the message coming from Alice’s side. Then, a
process similar to that on Alice’s browser would occur. Bob’s browser verifies that the
calling service is approved and the media streams are created; afterwards, a signaling
message containing media information, ICE candidates, and a fingerprint is sent back
to Alice via the signaling service.
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Figure 1-5. Call setup from Alice’s perspective

10 | Chapter 1: Introduction



CHAPTER 2

Handling Media in the Browser

In this chapter, we start delving into the details of the WebRTC framework, which ba‐
sically specifies a set of JavaScript APIs for the development of web-based applications.
The APIs have been conceived at the outset as friendly tools for the implementation of
basic use cases, like a one-to-one audio/video call. They are also meant to be flexible
enough to guarantee that the expert developer can implement a variegated set of much
more complicated usage scenarios. The programmer is hence provided with a set of
APIs which can be roughly divided into three logical groups:

1. Acquisition and management of both local and remote audio and video:

• MediaStream interface (and related use of the HTML5 <audio> and <video> tags)

2. Management of connections:

• RTCPeerConnection interface

3. Management of arbitrary data:

• RTCDataChannel interface.

WebRTC in 10 Steps
The following 10-step recipe describes a typical usage scenario of the WebRTC APIs:

1. Create a MediaStream object from your local devices (e.g., microphone, webcam).
2. Obtain a URL blob from the local MediaStream.
3. Use the obtained URL blob for a local preview.
4. Create an RTCPeerConnection object.
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5. Add the local stream to the newly created connection.
6. Send your own session description to the remote peer.
7. Receive the remote session description from your peer.
8. Process the received session description and add the remote stream to your

RTCPeerConnection.
9. Obtain a URL blob from the remote stream.

10. Use the obtained URL blob to play the remote peer’s audio and/or video.

We will complete the above recipe step by step. In the remainder of this chapter we will
indeed cover the first three phases of the entire peer-to-peer WebRTC-based commu‐
nication lifecycle. This means that we will forget about our remote peer for the moment
and just focus on how to access and make use of local audio and video resources from
within our browser. While doing this, we will also take a look at how to play a bit with
constraints (e.g., to force video resolution).

Warning: WebRTC supported browsers
At the time of this writing, the WebRTC API is available in Chrome,
Firefox, and Opera. All of the samples contained in this book have
been tested with these browsers. For the sake of conciseness (and
since Opera and Chrome act almost identically when it comes to the
API’s implementation) we will from now on just focus on Chrome
and Firefox as running client platform examples.

Media Capture and Streams
The W3C Media Capture and Streams document defines a set of JavaScript APIs that
enable the application to request audio and video streams from the platform, as well as
manipulate and process the stream data.

MediaStream API
A MediaStream interface is used to represent streams of media data. Flows can be either
input or output, as well as either local or remote (e.g., a local webcam or a remote
connection). It has to be noted that a single MediaStream can contain zero or multiple
tracks. Each track has a corresponding MediaStreamTrack object representing a specific
media source in the user agent. All tracks in a MediaStream are intended to be synchron‐
ized when rendered. A MediaStreamTrack represents content comprising one or more
channels, where the channels have a defined, well-known relationship to each other. A
channel is the smallest unit considered in this API specification. Figure 2-1 shows a
MediaStream composed of a single video track and two distinct audio (left and right
channel) tracks.
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Figure 2-1. A MediaStream made of one video track and two audio tracks

The W3C Media Capture and Streams API defines the two methods getUserMedia()
and createObjectUrl(), which are briefly explained in the following sections.

Obtaining Local Multimedia Content
The getUserMedia() API allows web developers to obtain access to local device media
(currently, audio and/or video), by specifying a set of (either mandatory or optional)
constraints, as well as proper callbacks for the asynchronous management of both suc‐
cessful and unsuccessful setup:

getUserMedia(constraints, successCallback, errorCallback)

getUserMedia() prompts the user for permission to use their webcam or other video
or audio input.

URL
The createObjectUrl() method instructs the browser to create and manage a unique
URL associated with either a local file or a binary object (blob):

createObjectURL(stream)

Its typical usage in WebRTC will be to create a blob URL starting from a MediaStream
object. The blob URL will then be used inside an HTML page. This procedure is actually
needed for both local and remote streams.

Playing with the getUserMedia() API
So, let’s get started with the getUserMedia() API call and its returned MediaStream
object. We will prepare a simple HTML page with some JavaScript code allowing us to
access local video resources and display them inside an HTML5 <video> tag.
Example 2-1 shows the very simple page we have built for our first example.
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Example 2-1. Our first WebRTC-enabled HTML page
<!DOCTYPE html>
<html>
<head>

<title>getUserMedia very simple demo</title>

</head>
<body>
<div id="mainDiv">

  <h1><code>getUserMedia()</code> very simple demo</h1>

  <p>With this example, we simply call <code>getUserMedia()</code> and display
  the received stream inside an HTML5 <video> element</p>

  <p>View page source to access both HTML and JavaScript code...</p>

  <video autoplay></video>

  <script src="js/getUserMedia.js"></script>

</div>
</body>
</html>

Example 2-1 contains a reference to a JavaScript file (getUserMedia.js), whose content
is shown in Example 2-2.

Example 2-2. The getUserMedia.js file
// Look after different browser vendors' ways of calling the getUserMedia()
// API method:
// Opera --> getUserMedia
// Chrome --> webkitGetUserMedia
// Firefox --> mozGetUserMedia

navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia
                            || navigator.mozGetUserMedia;

// Use constraints to ask for a video-only MediaStream:
var constraints = {audio: false, video: true};

var video = document.querySelector("video");

// Callback to be called in case of success...
function successCallback(stream) {

  // Note: make the returned stream available to console for inspection
  window.stream = stream;
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  if (window.URL) {
    // Chrome case: URL.createObjectURL() converts a MediaStream to a blob URL
    video.src = window.URL.createObjectURL(stream);
  } else {
    // Firefox and Opera: the src of the video can be set directly from the stream
    video.src = stream;
  }
  // We're all set. Let's just play the video out!
  video.play();
}

// Callback to be called in case of failures...
function errorCallback(error){
  console.log("navigator.getUserMedia error: ", error);
}

// Main action: just call getUserMedia() on the navigator object
navigator.getUserMedia(constraints, successCallback, errorCallback);

The following screenshots show how the page looks when we load it into either Chrome
(Figure 2-2) or Firefox (Figure 2-3).

Figure 2-2. Opening our first example in Chrome
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Figure 2-3. Opening our first example in Firefox

Warning: Opening JavaScript files in Chrome
If you want to test the code in Google Chrome on your local ma‐
chine, you are going to face some challenges, since Chrome will not
load local files by default due to security restrictions. In order to
overcome such issues you’ll have to either run a web server locally
on your machine and use it to serve the application’s files, or use the
--allow-file-access-from-files option when launching your
browser.

As you can see from the figures above, both browsers ask for the user’s consent before
accessing local devices (in this case, the webcam). After gathering such an explicit con‐
sent from the user, the browser eventually associates the acquired MediaStream with the
page, as shown in Figures 2-4 and 2-5.

It is important to note that the permission grant is tied to the domain of the web page,
and that this permission does not extend to pop ups and other frames on the web page.
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Figure 2-4. Showing the acquired MediaStream in Chrome

Figure 2-5. Showing the acquired MediaStream in Firefox
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Delving into some of the details of the simple code reported above, we can highlight
how we make a call to the API method getUserMedia(constraints, successCall
back, errorCallback), whose arguments have the following meaning:

• A constraints object (see “Media Constraints” on page 19), used to specify that we
are interested in gathering just the local video (constraints = {audio: false,
video: true}).

• A success callback which, if called, is passed a MediaStream. In our case, such a
MediaStream is first made available to the console for the user’s inspection (win
dow.stream = stream;). Then, it is attached to the <video> element of the HTML5
page and eventually displayed. With reference to console inspection of the returned
object, Figure 2-6 shows a snapshot of the output of such an activity within the
developer’s tool window in Chrome. Each MediaStream is characterized by a label
and contains one or more MediaStreamTracks representing channels of either au‐
dio or video.

Figure 2-6. Inspecting a MediaStream in Chrome’s console

With reference to how the returned stream is attached to the <video> element, notice
that Chrome calls for a conversion to a so-called blob URL (video.src = win
dow.URL.createObjectURL(stream);), whereas the other WebRTC-enabled browsers
allow you to use it as is (video.src = stream;).
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• A failure callback which, if called, is passed an error object. In our basic example,
the mentioned callback just logs the returned error to the console (con
sole.log("navigator.getUserMedia error: ", error);).

The Media Model
Browsers provide a media pipeline from sources to sinks. In a browser, sinks are the
<img>, <video>, and <audio> tags. A source can be a physical webcam, a microphone,
a local video or audio file from the user’s hard drive, a network resource, or a static
image. The media produced by these sources typically do not change over time. These
sources can be considered static. The sinks that display such sources to the users (the
actual tags themselves) have a variety of controls for manipulating the source content.

The getUserMedia() API method adds dynamic sources such as microphones and
cameras. The caracteristics of these sources can change in response to application needs.
These sources can be considered dynamic in nature.

Media Constraints
Constraints are an optional feature for restricting the range of allowed variability on a
source of a MediaStream track. Constraints are exposed on tracks via the Constraina
ble interface, which includes an API for dynamically changing constraints.

The getUserMedia() call also permits an initial set of constraints to be applied (for
example, to set values for video resolution) when the track is first obtained.

The core concept of constraints is a capability, which consists of a property or feature
of an object together with the set of its possible values, which may be specified either as
a range or as an enumeration.

Constraints are stored on the track object, not the source. Each track can be optionally
initialized with constraints. Otherwise, constraints can be added afterwards through
the dedicated constraint APIs.

Constraints can be either optional or mandatory. Optional constraints are represented
by an ordered list, while mandatory constraints are associated with an unordered set.

The aim is to provide support for more constraints before the final version of the API
is released; such constraints will include things like aspect ratio, camera facing mode
(front or back), audio and video frame rate, video height and width, and so on.

Using Constraints
In this section, we will take a quick look at how you can apply an initial set of constraints
when the track is obtained using the getUserMedia() call.
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Warning: getUserMedia() constraints support in WebRTC browsers
getUserMedia() constraints are currently only supported in
Chrome. The example in this section will assume that you use this
browser.

Let’s first build the HTML page in Example 2-3.

Example 2-3. Playing with constraints: The HTML page
<!DOCTYPE html>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
        "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title>getUserMedia() and constraints</title>

</head>
<body>
<div id="mainDiv">

  <h1><code>getUserMedia()</code>: playing with video constraints</h1>

  <p>Click one of the below buttons to change video resolution...</p>

    <div id="buttons">
          <button id="qvga">320x240</button>
          <button id="vga">640x480</button>
          <button id="hd">1280x960</button>
        </div>

  <p id="dimensions"></p>

  <video autoplay></video>

  <script src="js/getUserMedia_constraints.js"></script>
</div>

</body>
</html>

As you can see from both the code snippet in Example 2-3 and the snapshot in
Figure 2-7, the page contains three buttons, each associated with the local video stream
represented at a specific resolution (from low resolution, up to high-definition video).
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Figure 2-7. A simple HTML page showing the use of constraints in Chrome

Example 2-4 shows the JavaScript code used to both acquire the local video stream and
attach it to the web page with a well-defined resolution.

Example 2-4. Playing with constraints: The getUserMedia_constraints.js file
// Define local variables associated with video resolution selection
// buttons in the HTML page
var vgaButton = document.querySelector("button#vga");
var qvgaButton = document.querySelector("button#qvga");
var hdButton = document.querySelector("button#hd");

// Video element in the HTML5 page
var video = document.querySelector("video");

// The local MediaStream to play with
var stream;

// Look after different browser vendors' ways of calling the
// getUserMedia() API method:
navigator.getUserMedia = navigator.getUserMedia ||
  navigator.webkitGetUserMedia || navigator.mozGetUserMedia;

// Callback to be called in case of success...
function successCallback(gotStream) {
  // Make the stream available to the console for introspection
  window.stream = gotStream;
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  // Attach the returned stream to the <video> element
  // in the HTML page
  video.src = window.URL.createObjectURL(stream);

  // Start playing video
  video.play();
}

// Callback to be called in case of failure...
function errorCallback(error){
  console.log("navigator.getUserMedia error: ", error);
}

// Constraints object for low resolution video
var qvgaConstraints  = {
  video: {
    mandatory: {
      maxWidth: 320,
      maxHeight: 240
    }
  }
};

// Constraints object for standard resolution video
var vgaConstraints  = {
  video: {
    mandatory: {
      maxWidth: 640,
      maxHeight: 480
    }
  }
};

// Constraints object for high resolution video
var hdConstraints  = {
  video: {
    mandatory: {
      minWidth: 1280,
      minHeight: 960
    }
  }
};

// Associate actions with buttons:
qvgaButton.onclick = function(){getMedia(qvgaConstraints)};
vgaButton.onclick = function(){getMedia(vgaConstraints)};
hdButton.onclick = function(){getMedia(hdConstraints)};

// Simple wrapper for getUserMedia() with constraints object as
// an input parameter
function getMedia(constraints){
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  if (!!stream) {
    video.src = null;
    stream.stop();
  }
  navigator.getUserMedia(constraints, successCallback, errorCallback);
}

The code in Example 2-4 is quite straightforward. The core part is related to the proper
definition of constraints objects, each of which can be passed as an input parameter to
the getUserMedia() function. The three sample objects therein contained simply state
that video is to be considered mandatory and further specify resolution in terms of lower
bounds on both its width and height. To give the reader a flavor of what this means,
Figures 2-8 and 2-9 show, respectively, a 320×240 and a 640×480 resolution stream.

Figure 2-8. Showing 320×240 resolution video in Chrome
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Figure 2-9. Showing 640×480 resolution video in Chrome
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CHAPTER 3

Building the Browser RTC Trapezoid:
A Local Perspective

In the previous chapter, we started to delve into the details of the Media Capture and
Streams API by covering the first three steps of what we called a 10-step web real-time
communications recipe. In particular, we discussed a couple of examples showing how
we can access and manage local media streams by using the getUserMedia() method.
The time is now ripe to start taking a look at the communication part.

In this chapter we will analyze the WebRTC 1.0 API, whose main purpose is to allow
media to be sent to and received from another browser.

As we already anticipated in previous chapters, a mechanism is needed to properly
coordinate the real-time communication, as well as to let peers exchange control mes‐
sages. Such a mechanism, universally known as signaling, has not been defined inside
WebRTC and thus does not belong in the RTCPeerConnection API specification.

The choice to make such an API agnostic with respect to signaling was made at the
outset. Signaling is not standardized in WebRTC because the interoperability between
browsers is ensured by the web server, using downloaded JavaScript code. This means
that WebRTC developers can implement the signaling channel by relying on their fa‐
vorite messaging protocol (SIP, XMPP, Jingle, etc.), or they can design a proprietary
signaling mechanism that might only provide the features needed by the application.

The one and only architectural requirement with respect to this part of a WebRTC
application concerns the availability of a properly configured bidirectional communi‐
cation channel between the web browser and the web server. XMLHttpRequest (XHR),
WebSocket, and solutions like Google’s Channel API represent good candidates for this.
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The signaling channel is needed to allow the exchange of three types of information
between WebRTC peers:
Media session management

Setting up and tearing down the communication, as well as reporting potential error
conditions

Nodes’ network configuration
Network addresses and ports available for the exchanging of real-time data, even
in the presence of NATs

Nodes’ multimedia capabilities
Supported media, available encoders/decoders (codecs), supported resolutions and
frame rates, etc.

No data can be transferred between WebRTC peers before all of the above information
has been properly exchanged and negotiated.

In this chapter, we will disregard all of the above mentioned issues related to the setup
(and use) of a signaling channel and just focus on the description of the RTCPeerCon‐
nection API. We will achieve this goal by somehow emulating peer-to-peer behavior on
a single machine. This means that we will for the time being bypass the signaling channel
setup phase and let the three steps mentioned above (session management, network
configuration, and multimedia capabilities exchange) happen on a single machine. In
Chapter 5 we will eventually add the last brick to the WebRTC building, by showing
how the local scenario can become a distributed one thanks to the introduction of a real
signaling channel between two WebRTC-enabled peers.

Coming back to the API, calling new RTCPeerConnection (configuration) creates an
RTCPeerConnection object, which is an abstraction for a communication channel be‐
tween two users/browsers and can be either input or output for a particular Media
Stream, as illustrated in Figure 3-1. The configuration parameter contains information
to find access to the STUN and TURN servers, necessary for the NAT traversal setup
phase.
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Figure 3-1. Adding a MediaStream to a PeerConnection

Using PeerConnection Objects Locally: An Example
Let’s now start with the simple HTML code shown in Example 3-1.

Example 3-1. Local RTCPeerConnection usage example
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
        "http://www.w3.org/TR/html4/loose.dtd">
<html>

<head>

<title>Local PeerConnection() example</title>

</head>

<body>

<table border="1" width="100%">
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    <tr>
                <th>
                        Local video
                </th>
                <th>
                        'Remote' video
                </th>
        </tr>
        <tr>
                <td>
                        <video id="localVideo" autoplay></video>
                </td>
                <td>
                        <video id="remoteVideo" autoplay></video>
                </td>
        </tr>
        <tr>
                <td align="center">
                        <div>
                                <button id="startButton">Start</button>
                                <button id="callButton">Call</button>
                                <button id="hangupButton">Hang Up</button>
                        </div>

                </td>
                <td>
                        <!-- void -->
                </td>
        </tr>
</table>

<script src="js/localPeerConnection.js"></script>

</body>

</html>

Example 3-1 acts as a container for two video streams, represented side by side in a table
format. The stream on the left represents a local capture, whereas the one on the right
mimics a remote party (which will actually be a further capture of the local audio and
video devices). Media capture and rendering is triggered by events associated with three
buttons, which function, respectively, to start the application, to place a call between
the local and the (fake) remote party, and to hang up the call. The core of this application
is, as usual, the JavaScript code contained in the file localPeerConnection.js, which is
reported in the following:

// JavaScript variables holding stream and connection information
var localStream, localPeerConnection, remotePeerConnection;

// JavaScript variables associated with HTML5 video elements in the page
var localVideo = document.getElementById("localVideo");
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var remoteVideo = document.getElementById("remoteVideo");

// JavaScript variables assciated with call management buttons in the page
var startButton = document.getElementById("startButton");
var callButton = document.getElementById("callButton");
var hangupButton = document.getElementById("hangupButton");

// Just allow the user to click on the Call button at start-up
startButton.disabled = false;
callButton.disabled = true;
hangupButton.disabled = true;

// Associate JavaScript handlers with click events on the buttons
startButton.onclick = start;
callButton.onclick = call;
hangupButton.onclick = hangup;

// Utility function for logging information to the JavaScript console
function log(text) {
  console.log("At time: " + (performance.now() / 1000).toFixed(3) + " --> " \
              + text);
}

// Callback in case of success of the getUserMedia() call
function successCallback(stream){
  log("Received local stream");

  // Associate the local video element with the retrieved stream
  if (window.URL) {
    localVideo.src = URL.createObjectURL(stream);
  } else {
    localVideo.src = stream;
  }

  localStream = stream;

  // We can now enable the Call button
  callButton.disabled = false;
}

// Function associated with clicking on the Start button
// This is the event triggering all other actions
function start() {
  log("Requesting local stream");
  // First of all, disable the Start button on the page
  startButton.disabled = true;
  // Get ready to deal with different browser vendors...
  navigator.getUserMedia = navigator.getUserMedia ||
    navigator.webkitGetUserMedia || navigator.mozGetUserMedia;
  // Now, call getUserMedia()
  navigator.getUserMedia({audio:true, video:true}, successCallback,
    function(error) {
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      log("navigator.getUserMedia error: ", error);
    });
}

// Function associated with clicking on the Call button
// This is enabled upon successful completion of the Start button handler
function call() {
  // First of all, disable the Call button on the page...
  callButton.disabled = true;
  // ...and enable the Hangup button
  hangupButton.disabled = false;
  log("Starting call");

  // Note that getVideoTracks() and getAudioTracks() are not currently
  // supported in Firefox...
  // ...just use them with Chrome
  if (navigator.webkitGetUserMedia) {
          // Log info about video and audio device in use
          if (localStream.getVideoTracks().length > 0) {
            log('Using video device: ' + localStream.getVideoTracks()[0].label);
          }
          if (localStream.getAudioTracks().length > 0) {
            log('Using audio device: ' + localStream.getAudioTracks()[0].label);
          }
  }

  // Chrome
  if (navigator.webkitGetUserMedia) {
          RTCPeerConnection = webkitRTCPeerConnection;
  // Firefox
  } else if(navigator.mozGetUserMedia){
          RTCPeerConnection = mozRTCPeerConnection;
          RTCSessionDescription = mozRTCSessionDescription;
          RTCIceCandidate = mozRTCIceCandidate;
  }
  log("RTCPeerConnection object: " + RTCPeerConnection);

  // This is an optional configuration string, associated with
  // NAT traversal setup
  var servers = null;

  // Create the local PeerConnection object
  localPeerConnection = new RTCPeerConnection(servers);
  log("Created local peer connection object localPeerConnection");
  // Add a handler associated with ICE protocol events
  localPeerConnection.onicecandidate = gotLocalIceCandidate;

  // Create the remote PeerConnection object
  remotePeerConnection = new RTCPeerConnection(servers);
  log("Created remote peer connection object remotePeerConnection");
  // Add a handler associated with ICE protocol events...
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  remotePeerConnection.onicecandidate = gotRemoteIceCandidate;
  // ...and a second handler to be activated as soon as the remote
  // stream becomes available.
  remotePeerConnection.onaddstream = gotRemoteStream;

  // Add the local stream (as returned by getUserMedia())
  // to the local PeerConnection.
  localPeerConnection.addStream(localStream);
  log("Added localStream to localPeerConnection");

  // We're all set! Create an Offer to be 'sent' to the callee as soon
  // as the local SDP is ready.
  localPeerConnection.createOffer(gotLocalDescription, onSignalingError);
}

function onSignalingError(error){
    console.log('Failed to create signaling message : ' + error.name);
}

// Handler to be called when the 'local' SDP becomes available
function gotLocalDescription(description){
  // Add the local description to the local PeerConnection
  localPeerConnection.setLocalDescription(description);
  log("Offer from localPeerConnection: \n" + description.sdp);

  // ...do the same with the 'pseudoremote' PeerConnection
  // Note: this is the part that will have to be changed if you want
  // the communicating peers to become remote
  // (which calls for the setup of a proper signaling channel)
  remotePeerConnection.setRemoteDescription(description);

  // Create the Answer to the received Offer based on the 'local' description
  remotePeerConnection.createAnswer(gotRemoteDescription, onSignalingError);
}

// Handler to be called when the remote SDP becomes available
function gotRemoteDescription(description){
  // Set the remote description as the local description of the
  // remote PeerConnection.
  remotePeerConnection.setLocalDescription(description);
  log("Answer from remotePeerConnection: \n" + description.sdp);
  // Conversely, set the remote description as the remote description of the
  // local PeerConnection
  localPeerConnection.setRemoteDescription(description);
}

// Handler to be called when hanging up the call
function hangup() {
  log("Ending call");
  // Close PeerConnection(s)
  localPeerConnection.close();
  remotePeerConnection.close();
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  // Reset local variables
  localPeerConnection = null;
  remotePeerConnection = null;
  // Disable Hangup button
  hangupButton.disabled = true;
  // Enable Call button to allow for new calls to be established
  callButton.disabled = false;
}

// Handler to be called as soon as the remote stream becomes available
function gotRemoteStream(event){
  // Associate the remote video element with the retrieved stream
  if (window.URL) {
    // Chrome
    remoteVideo.src = window.URL.createObjectURL(event.stream);
  } else {
    // Firefox
    remoteVideo.src = event.stream;
  }
  log("Received remote stream");
}

// Handler to be called whenever a new local ICE candidate becomes available
function gotLocalIceCandidate(event){
  if (event.candidate) {
        // Add candidate to the remote PeerConnection
    remotePeerConnection.addIceCandidate(new RTCIceCandidate(event.candidate));
    log("Local ICE candidate: \n" + event.candidate.candidate);
  }
}

// Handler to be called whenever a new remote ICE candidate becomes available
function gotRemoteIceCandidate(event){
  if (event.candidate) {
        // Add candidate to the local PeerConnection
    localPeerConnection.addIceCandidate(new RTCIceCandidate(event.candidate));
    log("Remote ICE candidate: \n " + event.candidate.candidate);
  }
}

In order to easily understand the contents of this code, let’s follow the evolution of our
application step by step. We will show screen captures taken with both Chrome and
Firefox, so you can appreciate the differences related to both the look and feel of the
application and the developers’ tools made available by the two browsers.

Starting the Application
Here is what happens when the user clicks on the Start button in Chrome (Figure 3-2)
and in Firefox (Figure 3-3).
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Figure 3-2. The example page loaded in Chrome

Figure 3-3. The example page loaded in Firefox
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As you can see from both figures, the browser is asking for the user’s consent to access
local audio and video devices. As we know from the previous chapter, this is due to the
execution of the getUserMedia() call, as indicated by the JavaScript snippet that follows:

// Function associated with clicking on the Start button
// This is the event triggering all other actions
function start() {
  log("Requesting local stream");
  // First of all, disable the Start button on the page
  startButton.disabled = true;
  // Get ready to deal with different browser vendors...
  navigator.getUserMedia = navigator.getUserMedia ||
    navigator.webkitGetUserMedia || navigator.mozGetUserMedia;
  // Now, call getUserMedia()
  navigator.getUserMedia({audio:true, video:true}, successCallback,
    function(error) {
      log("navigator.getUserMedia error: ", error);
    });
}

As soon as the user provides consent, the successCallback() function is triggered.
Such a function simply attaches the local stream (containing both audio and video
tracks) to the localVideo element in the HTML5 page:

 ...
 // Associate the local video element with the retrieved stream
  if (window.URL) {
      localVideo.src = URL.createObjectURL(stream);
  } else {
         localVideo.src = stream;
  }

  localStream = stream;
  ...

The effect of the execution of the callback is shown in Figure 3-4 (Chrome) and
Figure 3-5 (Firefox).

34 | Chapter 3: Building the Browser RTC Trapezoid: A Local Perspective



Figure 3-4. The example page after user grants consent, in Chrome

Figure 3-5. The example page after user grants consent, in Firefox
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Placing a Call
Once consent has been granted, the Start button gets disabled and the Call button be‐
comes in turn enabled. If the user clicks on it, the Call() function is triggered. Such a
function first does some basic housekeeping like disabling the Call button and enabling
the Hangup button. Then, in the case of Chrome and Opera (this feature is not currently
implemented in Firefox), it logs some information about the available media tracks to
the console:

// Function associated with clicking on the Call button
// This is enabled upon successful completion of the Start button handler
function call() {
  // First of all, disable the Call button on the page...
  callButton.disabled = true;
  // ...and enable the Hangup button
  hangupButton.disabled = false;
  log("Starting call");

  // Note that getVideoTracks() and getAudioTracks() are not currently
  // supported in Firefox...
  // ...just use them with Chrome
  if (navigator.webkitGetUserMedia) {
      // Log info about video and audio device in use
          if (localStream.getVideoTracks().length > 0) {
            log('Using video device: ' + localStream.getVideoTracks()[0].label);
          }
          if (localStream.getAudioTracks().length > 0) {
            log('Using audio device: ' + localStream.getAudioTracks()[0].label);
          }
  }
  ...

The getVideoTracks() and getAudioTracks() methods, defined by
the MediaStream constructor in the Media Capture and Streams API,
return a sequence of MediaStreamTrack objects representing, respec‐
tively, the video tracks and the audio tracks in the stream.

Once done with the preceding operations, we finally get into the core of the code, namely
the part where we encounter the RTCPeerConnection object for the very first time:

 ...
 // Chrome
  if (navigator.webkitGetUserMedia) {
      RTCPeerConnection = webkitRTCPeerConnection;
  // Firefox
  } else if(navigator.mozGetUserMedia){
          RTCPeerConnection = mozRTCPeerConnection;
          RTCSessionDescription = mozRTCSessionDescription;
          RTCIceCandidate = mozRTCIceCandidate;
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  }
  log("RTCPeerConnection object: " + RTCPeerConnection);
  ...

The above snippet contains some JavaScript code that has a solitary goal of detecting
the type of browser in use, in order to give the right name to the right object. You will
notice from the code that the standard RTCPeerConnection object is currently prefixed
both in Chrome (webkitRTCPeerConnection) and in Firefox (mozRTCPeerConnec
tion). The latter browser, by the way, also has a nonstandard way of naming the related
RTCSessionDescription and RTCIceCandidate objects associated, respectively, with
the description of the session to be negotiated and the representation of ICE protocol
candidate addresses (see Chapter 4).

Once the (right) RTCPeerConnection object has been identified, we can eventually in‐
stantiate it:

  ...
  // This is an optional configuration string, associated with
  // NAT traversal setup
  var servers = null;

  // Create the local PeerConnection object
  localPeerConnection = new RTCPeerConnection(servers);
  log("Created local peer connection object localPeerConnection");
  // Add a handler associated with ICE protocol events
  localPeerConnection.onicecandidate = gotLocalIceCandidate;
  ...

The above snippet shows that an RTCPeerConnection object is instantiated through a
constructor taking an optional servers parameter as input. Such a parameter can be
used to properly deal with NAT traversal issues, as will be explained in Chapter 4.

RTCPeerConnection
Calling new RTCPeerConnection(configuration) creates an RTCPeerConnection ob‐
ject. The configuration has the information to find and access the STUN and TURN
servers (there may be multiple servers of each type, with any TURN server also acting
as a STUN server). Optionally, it also takes a MediaConstraints object “Media Con‐
straints” on page 19.

When the RTCPeerConnection constructor is invoked, it also creates an ICE Agent re‐
sponsible for the ICE state machine, controlled directly by the browser. The ICE Agent
will proceed with gathering the candidate addresses when the IceTransports constraint
is not set to “none.”

An RTCPeerConnection object has two associated stream sets. A local streams set, rep‐
resenting streams that are currently sent, and a remote streams set, representing streams

Using PeerConnection Objects Locally: An Example | 37



that are currently received through this RTCPeerConnection object. The stream sets are
initialized to empty sets when the RTCPeerConnection object is created.

The interesting thing to notice here is that the configuration of the newly created Peer
Connection is done asynchronously, through the definition of proper callback methods.

The onicecandidate handler is triggered whenever a new candidate
is made available to the local peer by the ICE protocol machine in‐
side the browser.

// Handler to be called whenever a new local ICE candidate becomes available
function gotLocalIceCandidate(event){
  if (event.candidate) {
    // Add candidate to the remote PeerConnection
    remotePeerConnection.addIceCandidate(new RTCIceCandidate(event.candidate));
    log("Local ICE candidate: \n" + event.candidate.candidate);
  }
}

The addIceCandidate() method provides a remote candidate to the
ICE Agent. In addition to being added to the remote description,
connectivity checks will be sent to the new candidates as long as the
IceTransports constraint is not set to “none.”

The snippet takes for granted that the remote peer is actually run locally, which avoids
the need for sending information about the gathered local address to the other party
across a properly configured signaling channel. Here is why this application won’t work
at all if you try and run it on two remote machines. In subsequent chapters we will
discuss how we can create such a signaling channel and use it to transfer ICE-related
(as well as session-related) information to the remote party. For the moment, we simply
add the gathered local network reachability information to the (locally available) remote
peer connection. Clearly, the same reasoning applies when switching roles between caller
and callee, i.e., the remote candidates will simply be added to the local peer connection
as soon as they become available:

  ...
  // Create the remote PeerConnection object
  remotePeerConnection = new RTCPeerConnection(servers);
  log("Created remote peer connection object remotePeerConnection");
  // Add a handler associated with ICE protocol events...
  remotePeerConnection.onicecandidate = gotRemoteIceCandidate;
  // ...and a second handler to be activated as soon as the remote
  // stream becomes available
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  remotePeerConnection.onaddstream = gotRemoteStream;
  ...

The onaddstream and onremovestream handlers are called any time
a MediaStream is respectively added or removed by the remote peer.
Both will be fired only as a result of the execution of the setRemote
Description() method.

The preceding snippet is related to the onaddstream handler, whose implementation
looks after attaching the remote stream (as soon as it becomes available) to the remote
Video element of the HTML5 page, as reported in the following:

// Handler to be called as soon as the remote stream becomes available
function gotRemoteStream(event){
  // Associate the remote video element with the retrieved stream
  if (window.URL) {
        // Chrome
        remoteVideo.src = window.URL.createObjectURL(event.stream);
  } else {
    // Firefox
        remoteVideo.src = event.stream;
  }
  log("Received remote stream");
}

Coming back to the Call() function, the only remaining actions concern adding the
local stream to the local PeerConnection and eventually invoking the createOffer()
method on it:

  ...
  // Add the local stream (as returned by getUserMedia()
  // to the local PeerConnection
    localPeerConnection.addStream(localStream);
  log("Added localStream to localPeerConnection");

  // We're all set! Create an Offer to be 'sent' to the callee as soon as
  // the local SDP is ready
  localPeerConnection.createOffer(gotLocalDescription,onSignalingError);
}

function onSignalingError(error) {
    console.log('Failed to create signaling message : ' + error.name);
}

The addStream() and removeStream() methods add a stream to and
remove a stream from an RTCPeerConnection object, respectively.
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The createOffer() method plays a fundamental role, since it asks the browser to
properly examine the internal state of the PeerConnection and generate an appropriate
RTCSessionDescription object, thus initiating the Offer/Answer-state machine.

The createOffer() method generates an SDP blob containing an
RFC3264 offer with the supported configurations for the session: the
descriptions of the local MediaStreams attached, the codec/RTP/
RTCP options supported by the browser, and any candidates that have
been gathered by the ICE Agent. The constraints parameter may be
supplied to provide additional control over the offer generated.

The createOffer() method takes as input a callback (gotLocalDescription) to be
called as soon as the session description is made available to the application. Also in this
case, once the session description is available, the local peer should send it to the callee
by using the signaling channel. For the moment, we will skip this phase and once more
make the assumption that the remote party is actually a locally reachable one, which
translates to the following actions:

// Handler to be called when the 'local' SDP becomes available
function gotLocalDescription(description){
  // Add the local description to the local PeerConnection
  localPeerConnection.setLocalDescription(description);
  log("Offer from localPeerConnection: \n" + description.sdp);

  // ...do the same with the 'pseudoremote' PeerConnection
  // Note: this is the part that will have to be changed if
  // you want the communicating peers to become remote
  // (which calls for the setup of a proper signaling channel)
  remotePeerConnection.setRemoteDescription(description);

  // Create the Answer to the received Offer based on the 'local' description
  remotePeerConnection.createAnswer(gotRemoteDescription,onSignalingError);
}

As stated in the commented snippet above, we herein directly set the retrieved session
description as both the local description for the local peer and the remote description
for the remote peer.

The setLocalDescription() and setRemoteDescription() meth‐
ods instruct the RTCPeerConnection to apply the supplied RTCSes
sionDescription as the local description and as the remote offer or
answer, respectively.

Then, we ask the remote peer to answer the offered session by calling the createAnsw
er() method on the remote peer conection. Such a method takes as input parameter a
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callback (gotRemoteDescription) to be called as soon as the remote browser makes its
own session description available to the remote peer. Such a handler actually mirrors
the behavior of the companion callback on the caller’s side:

// Handler to be called when the remote SDP becomes available
function gotRemoteDescription(description){
  // Set the remote description as the local description of the
  // remote PeerConnection
  remotePeerConnection.setLocalDescription(description);
  log("Answer from remotePeerConnection: \n" + description.sdp);
  // Conversely, set the remote description as the remote description
  // of the local PeerConnection
  localPeerConnection.setRemoteDescription(description);
}

The createAnswer() method generates an SDP answer with the sup‐
ported configuration for the session that is compatible with the pa‐
rameters in the remote configuration.

The entire call flow described above can actually be tracked down on the browser’s
console, as shown in Figure 3-6 (Chrome) and Figure 3-7 (Firefox).

Figure 3-6. Chrome console tracking down a call between two local peers
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Figure 3-7. Firefox console tracking down a call between two local peers

The two snapshots show the sequence of events that have been logged by the application,
as well as session description information in an SDP-compliant format. This last part
of the log will become clearer when we briefly introduce the Session Description Pro‐
tocol in Chapter 4.

When all of the above steps have completed, we finally see the two streams inside our
browser’s window, as shown in Figure 3-8 (Chrome) and Figure 3-9 (Firefox).
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Figure 3-8. Chrome showing local and remote media after a successful call

Figure 3-9. Firefox showing local and remote media after a successful call
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Hanging Up
Once done with a call, the user can tear it down by clicking on the Hangup button. This
triggers the execution of the associated handler:

// Handler to be called when hanging up the call
function hangup() {
  log("Ending call");
  // Close PeerConnection(s)
  localPeerConnection.close();
  remotePeerConnection.close();
  // Reset local variables
  localPeerConnection = null;
  remotePeerConnection = null;
  // Disable Hangup button
  hangupButton.disabled = true;
  // Enable Call button to allow for new calls to be established
  callButton.disabled = false;
}

As we can see from a quick look at the code, the hangup() handler simply closes the
instantiated peer connections and releases resources. It then disables the Hangup button
and enables the Call button, thus rolling the settings back to the point we reached right
after starting the application for the very first time (i.e., after the getUserMedia() call).
We’re now in a state from which a new call can be placed and the game can be started
all over again. This situation is depicted in Figure 3-10 (Chrome) and Figure 3-11
(Firefox).

The close() method destroys the RTCPeerConnection ICE Agent,
abruptly ending any active ICE processing and any active streams,
and releasing any relevant resources.
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Figure 3-10. Chrome after tearing down a call

Figure 3-11. Firefox after tearing down a call
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Notice that the two frames in both windows are different, which illustrates the fact that,
even though no peer connection is available anymore, we now have a live local stream
and a frozen remote stream. This is also reported in the console log.

Adding a DataChannel to a Local PeerConnection
The Peer-to-Peer Data API lets a web application send and receive generic application
data in a peer-to-peer fashion. The API for sending and receiving data draws inspiration
from WebSocket.

In this section we will show how to add a DataChannel to a PeerConnection. Once
again, we will stick to the local perspective and ignore signaling issues. Let’s get started
with the HTML5 page in Example 3-2.

Example 3-2. Local DataChannel usage example
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
            "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>DataChannel simple example</title>
</head>

<body>
    <textarea rows="5" cols="50" id="dataChannelSend" disabled placeholder="
                1: Press Start; 2: Enter text; 3: Press Send."></textarea>
        <textarea rows="5" cols="50" id="dataChannelReceive" disabled></textarea>

  <div id="buttons">
    <button id="startButton">Start</button>
    <button id="sendButton">Send</button>
    <button id="closeButton">Stop</button>
  </div>

<script src="js/dataChannel.js"></script>

</body>
</html>

The page (whose look and feel in Chrome is illustrated in Figure 3-12) simply contains
two side-by-side text areas associated, respectively, with data to be sent from the sender’s
data channel, and data received by the other party on the receiver’s data channel. Three
buttons are used to orchestrate the application: (1) a Start button to be pressed upon
startup; (2) a Send button to be used whenever new data has to be streamed across the
data channel; and (3) a Close button useful for resetting the application and bringing it
back to its original state.
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Figure 3-12. The DataChannel example page loaded in Chrome

As usual, the core behavior of this application is implemented in the embedded Java‐
Script file dataChannel.js, which is laid out in the following:

//JavaScript variables associated with send and receive channels
var sendChannel, receiveChannel;

//JavaScript variables associated with demo buttons
var startButton = document.getElementById("startButton");
var sendButton = document.getElementById("sendButton");
var closeButton = document.getElementById("closeButton");

//On startup, just the Start button must be enabled
startButton.disabled = false;
sendButton.disabled = true;
closeButton.disabled = true;

//Associate handlers with buttons
startButton.onclick = createConnection;
sendButton.onclick = sendData;
closeButton.onclick = closeDataChannels;

//Utility function for logging information to the JavaScript console
function log(text) {
    console.log("At time: " + (performance.now() / 1000).toFixed(3) +
            " --> " + text);
}
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function createConnection() {
        // Chrome
        if (navigator.webkitGetUserMedia) {
                RTCPeerConnection = webkitRTCPeerConnection;
                // Firefox
        } else if(navigator.mozGetUserMedia){
                RTCPeerConnection = mozRTCPeerConnection;
                RTCSessionDescription = mozRTCSessionDescription;
                RTCIceCandidate = mozRTCIceCandidate;
        }
        log("RTCPeerConnection object: " + RTCPeerConnection);

        // This is an optional configuration string
    // associated with NAT traversal setup
        var servers = null;

        // JavaScript variable associated with proper
        // configuration of an RTCPeerConnection object:
        // use DTLS/SRTP
        var pc_constraints = {
                        'optional': [
                                     {'DtlsSrtpKeyAgreement': true}
                                    ]};

        // Create the local PeerConnection object...
        // ...with data channels
        localPeerConnection = new RTCPeerConnection(servers,pc_constraints);

        log("Created local peer connection object, with Data Channel");

        try {
                // Note: SCTP-based reliable DataChannels supported
                // in Chrome 29+ !
                // use {reliable: false} if you have an older version of Chrome
                sendChannel = localPeerConnection.createDataChannel( \
                              "sendDataChannel",{reliable: true});
                log('Created reliable send data channel');
        } catch (e) {
                alert('Failed to create data channel!');
                log('createDataChannel() failed with following message: ' \
                + e.message);
        }
        // Associate handlers with peer connection ICE events
        localPeerConnection.onicecandidate = gotLocalCandidate;

        // Associate handlers with data channel events
        sendChannel.onopen = handleSendChannelStateChange;
        sendChannel.onclose = handleSendChannelStateChange;

        // Mimic a remote peer connection
        window.remotePeerConnection = new RTCPeerConnection(servers, \

48 | Chapter 3: Building the Browser RTC Trapezoid: A Local Perspective



        pc_constraints);
        log('Created remote peer connection object, with DataChannel');

        // Associate handlers with peer connection ICE events...
        remotePeerConnection.onicecandidate = gotRemoteIceCandidate;
        // ...and data channel creation event
        remotePeerConnection.ondatachannel = gotReceiveChannel;

        // We're all set! Let's start negotiating a session...
        localPeerConnection.createOffer(gotLocalDescription,onSignalingError);

        // Disable Start button and enable Close button
        startButton.disabled = true;
        closeButton.disabled = false;
}

function onSignalingError(error) {
        console.log('Failed to create signaling message : ' + error.name);
}

// Handler for sending data to the remote peer
function sendData() {
        var data = document.getElementById("dataChannelSend").value;
        sendChannel.send(data);
        log('Sent data: ' + data);
}

// Close button handler
function closeDataChannels() {
        // Close channels...
        log('Closing data channels');
        sendChannel.close();
        log('Closed data channel with label: ' + sendChannel.label);
        receiveChannel.close();
        log('Closed data channel with label: ' + receiveChannel.label);
        // Close peer connections
        localPeerConnection.close();
        remotePeerConnection.close();
        // Reset local variables
        localPeerConnection = null;
        remotePeerConnection = null;
        log('Closed peer connections');
        // Rollback to the initial setup of the HTML5 page
        startButton.disabled = false;
        sendButton.disabled = true;
        closeButton.disabled = true;
        dataChannelSend.value = "";
        dataChannelReceive.value = "";
        dataChannelSend.disabled = true;
        dataChannelSend.placeholder = "1: Press Start; 2: Enter text; \
                                       3: Press Send.";
}
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// Handler to be called as soon as the local SDP is made available to
// the application
function gotLocalDescription(desc) {
        // Set local SDP as the right (local/remote) description for both local
        // and remote parties
        localPeerConnection.setLocalDescription(desc);
        log('localPeerConnection\'s SDP: \n' + desc.sdp);
        remotePeerConnection.setRemoteDescription(desc);

        // Create answer from the remote party, based on the local SDP
        remotePeerConnection.createAnswer(gotRemoteDescription,onSignalingError);
}

// Handler to be called as soon as the remote SDP is made available to
// the application
function gotRemoteDescription(desc) {
        // Set remote SDP as the right (remote/local) description for both local
        // and remote parties
        remotePeerConnection.setLocalDescription(desc);
        log('Answer from remotePeerConnection\'s SDP: \n' + desc.sdp);
        localPeerConnection.setRemoteDescription(desc);
}

// Handler to be called whenever a new local ICE candidate becomes available
function gotLocalCandidate(event) {
        log('local ice callback');
        if (event.candidate) {
                remotePeerConnection.addIceCandidate(event.candidate);
                log('Local ICE candidate: \n' + event.candidate.candidate);
        }
}

// Handler to be called whenever a new remote ICE candidate becomes available
function gotRemoteIceCandidate(event) {
        log('remote ice callback');
        if (event.candidate) {
                localPeerConnection.addIceCandidate(event.candidate);
                log('Remote ICE candidate: \n ' + event.candidate.candidate);
        }
}

// Handler associated with the management of remote peer connection's
// data channel events
function gotReceiveChannel(event) {
        log('Receive Channel Callback: event --> ' + event);
        // Retrieve channel information
        receiveChannel = event.channel;

        // Set handlers for the following events:
        // (i) open; (ii) message; (iii) close
        receiveChannel.onopen = handleReceiveChannelStateChange;
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        receiveChannel.onmessage = handleMessage;
        receiveChannel.onclose = handleReceiveChannelStateChange;
}

// Message event handler
function handleMessage(event) {
        log('Received message: ' + event.data);
        // Show message in the HTML5 page
        document.getElementById("dataChannelReceive").value = event.data;
        // Clean 'Send' text area in the HTML page
        document.getElementById("dataChannelSend").value = '';
}

// Handler for either 'open' or 'close' events on sender's data channel
function handleSendChannelStateChange() {
        var readyState = sendChannel.readyState;
        log('Send channel state is: ' + readyState);
        if (readyState == "open") {
                // Enable 'Send' text area and set focus on it
                dataChannelSend.disabled = false;
                dataChannelSend.focus();
                dataChannelSend.placeholder = "";
                // Enable both Send and Close buttons
                sendButton.disabled = false;
                closeButton.disabled = false;
        } else { // event MUST be 'close', if we are here...
                // Disable 'Send' text area
                dataChannelSend.disabled = true;
                // Disable both Send and Close buttons
                sendButton.disabled = true;
                closeButton.disabled = true;
        }
}

// Handler for either 'open' or 'close' events on receiver's data channel
function handleReceiveChannelStateChange() {
        var readyState = receiveChannel.readyState;
        log('Receive channel state is: ' + readyState);
}

As we did with the previous example, we will analyze the behavior of the application by
following its lifecycle step by step. We will skip all those parts that have already been
explained. This allows us to focus just on the new functionality introduced in the code.

Starting Up the Application
When the user clicks on the Start button in the page, a number of events happen behind
the scenes. Namely, the createConnection() handler is activated. Such a handler cre‐
ates both the local and the (fake) remote peer connections, in much the same way as we
saw with the previous example. The difference here is that this time, the peer connection
is also equipped with a data channel for the streaming of generic data:
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  ...
    // JavaScript variable associated with proper
        // configuration of an RTCPeerConnection object:
        // use DTLS/SRTP
        var pc_constraints = {
                        'optional': [
                                     {'DtlsSrtpKeyAgreement': true}
                                    ]};

        // Create the local PeerConnection object...
        // ...with data channels
        localPeerConnection = new RTCPeerConnection(servers,pc_constraints);

        log("Created local peer connection object, with DataChannel");

        try {
                // Note: SCTP-based reliable data channels supported
                // in Chrome 29+ !
                // use {reliable: false} if you have an older version of Chrome
                sendChannel = localPeerConnection.createDataChannel( \
                              "sendDataChannel", {reliable: true});
                log('Created reliable send data channel');
        } catch (e) {
                alert('Failed to create data channel!');
                log('createDataChannel() failed with following message: ' \
                + e.message);
        }
  ...

The preceding snippet shows how to add a DataChannel to an existing PeerConnec
tion by calling the createDataChannel() method. Note that this is a browser-specific
feature, not a standardized constraint.

The WebRTC API does not define the use of constraints with the
DataChannel API. It instead defines the usage of the so-called
RTCDataChannelInit dictionary (Table 3-1).

The data channel itself is actually added to the newly instantiated peer connection by
calling the createDataChannel("sendDataChannel", {reliable: true}); method
on it. The code shows that such a data channel can be either unreliable or reliable.
Reliability is guaranteed by the proper use of the SCTP protocol and is a feature that
has been initially made available just in Firefox. Is has only recently been implemented
in Chrome (since version 29 of the browser).
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createDataChannel
The createDataChannel() method creates a new RTCDataChannel object with the given
label. The RTCDataChannelInit dictionary (Table 3-1) can be used to configure prop‐
erties of the underlying channel, such as data reliability.

The RTCDataChannel interface represents a bidirectional data channel between two
peers. Each data channel has an associated underlying data transport that is used to
transport data to the other peer. The properties of the underlying data transport are
configured by the peer as the channel is created (Table 3-1). The properties of a channel
cannot change after the channel has been created. The actual wire protocol between the
peers is SCTP (see “DataChannel” on page 8).

An RTCDataChannel can be configured to operate in different reliability modes. A reli‐
able channel ensures that data is delivered to the other peer through retransmissions.
An unreliable channel is configured to either limit the number of retransmissions
(maxRetransmits) or set a time during which retransmissions are allowed (maxRetrans
mitTime). These properties cannot be used simultaneously and an attempt to do so will
result in an error. Not setting any of these properties results in the creation of a reliable
channel.

Table 3-1. RTCDataChannelInit dictionary members
Member Type Description

id unsigned short Overrides the default selection of id for this channel.

maxRetransmits unsigned short Limits the number of times a channel will retransmit data if not successfully delivered.

maxRetransmitTime unsigned short Limits the time during which the channel will retransmit data if not successfully delivered.

negotiated boolean The default value of false tells the user agent to announce the channel in-band and
instruct the other peer to dispatch a corresponding RTCDataChannel object.

ordered boolean If set to false, data are allowed to be delivered out of order. The default value of true
guarantees that data will be delivered in order.

protocol DOMString Subprotocol name used for this channel.

Local data channel events (onopen and onclose) are dealt with through proper handlers,
as illustrated in the following:

  ...
  // Associate handlers with send data channel events
  sendChannel.onopen = handleSendChannelStateChange;
  sendChannel.onclose = handleSendChannelStateChange;
  ...

As to the remote data channel (ondatachannel), it also evolves through events and
related callbacks:
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  ...
  remotePeerConnection.ondatachannel = gotReceiveChannel;
  ...

This callback is actually activated as soon as the pseudosignaling phase successfully
completes. Such a phase is triggered by the call localPeerConnection.createOff
er(gotLocalDescription,onSignalingError), which initiates the aforementioned
call flow involving the gathering of ICE protocol candidates, as well as the exchanging
of session descriptions.

The annotations on the JavaScript console log in Figures 3-13 and 3-14 show the first
phases of the bootstrapping procedure, as it takes place in Chrome and in Firefox,
respectively. We can see from the logs that the Offer/Answer phase starts right after the
creation of the local and remote peer connections.

Figure 3-13. Starting the data channel application in Chrome
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Figure 3-14. Starting the data channel application in Firefox

The answer, in particular, is prepared as soon as the local SDP is made available to the
application, inside the gotLocalDescription() handler:

function gotLocalDescription(desc) {
  // Set local SDP as the right (local/remote) description for both local
  // and remote parties
  localPeerConnection.setLocalDescription(desc);
  log('localPeerConnection\'s SDP: \n' + desc.sdp);
  remotePeerConnection.setRemoteDescription(desc);

  // Create answer from the remote party, based on the local SDP
  remotePeerConnection.createAnswer(gotRemoteDescription,onSignalingError);
}

Data channel state changes are dealt with, respectively, through the handleSendChan
nelStateChange() and handleReceiveChannelStateChange() event handlers. Upon
reception of the open event, the former function prepares the HTML5 page for editing
inside the sender’s text area, at the same time enabling both the Send and the Close
buttons:

  ...
  if (readyState == "open") {
    // Enable 'Send' text area and set focus on it
    dataChannelSend.disabled = false;
    dataChannelSend.focus();
    dataChannelSend.placeholder = "";
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        // Enable both Send and Close buttons
    sendButton.disabled = false;
    closeButton.disabled = false;
  ...

On the receiver’s side, the state change handler just logs information to the JavaScript
console:

function handleReceiveChannelStateChange() {
  var readyState = receiveChannel.readyState;
  log('Receive channel state is: ' + readyState);
}

The snapshots in Figure 3-15 (Chrome) and Figure 3-16 (Firefox) show the application’s
state at the end of the bootstrapping procedure.

Figure 3-15. The data channel application in Chrome, after startup
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Figure 3-16. The data channel application in Firefox, after startup

Streaming Text Across the Data Channel
Once the data channel is ready, we can finally use it to transfer information between the
sender and the receiver. Indeed, the user can edit a message inside the sender’s text area
and then click on the Send button in order to stream such information across the already
instantiated data channel, by using the sendData() handler:

function sendData() {
  var data = document.getElementById("dataChannelSend").value;
  sendChannel.send(data);
  log('Sent data: ' + data);
}

The send() method attempts to send data on the channel’s underly‐
ing data transport.
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As soon as new data arrives at the receiver, the handleMessage() handler is called in
turn. Such a handler first prints the received message inside the receiver’s text area and
then resets the sender’s editing box:

function handleMessage(event) {
  log('Received message: ' + event.data);
  // Show message in the HTML5 page
  document.getElementById("dataChannelReceive").value = event.data;
  // Clean 'Send' text area in the HTML page
  document.getElementById("dataChannelSend").value = '';
}

Figures 3-17 and 3-18 show the application’s state right before a message is transferred
across the data channel in Chrome and in Firefox, respectively.

Similarly, Figure 3-19 (Chrome) and Figure 3-20 (Firefox) report message reception
and associated actions in the HTML page.

Figure 3-17. Getting ready to stream a message across the data channel in Chrome
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Figure 3-18. Getting ready to stream a message across the data channel in Firefox

Figure 3-19. Receiving a message from the data channel in Chrome
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Figure 3-20. Receiving a message from the data channel in Firefox

Closing the Application
Once done with data transfers, the user can click on the Close button in order to:

• Close the data channels:

function closeDataChannels() {
  // Close channels...
  log('Closing data channels');
  sendChannel.close();
  log('Closed data channel with label: ' + sendChannel.label);
  receiveChannel.close();
  log('Closed data channel with label: ' + receiveChannel.label);
  ...

The close() method attempts to close the channel.

• Close the peer connections:
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  ...
  // Close peer connections
  localPeerConnection.close();
  remotePeerConnection.close();
  // Reset local variables
  localPeerConnection = null;
  remotePeerConnection = null;
  log('Closed peer connections');
  ...

• Reset the application:

  ...
  // Rollback to the initial setup of the HTML5 page
  startButton.disabled = false;
  sendButton.disabled = true;
  closeButton.disabled = true;
  dataChannelSend.value = "";
  dataChannelReceive.value = "";
  dataChannelSend.disabled = true;
  dataChannelSend.placeholder = "1: Press Start; 2: Enter text;
  3: Press Send.";
}

By looking at both the HTML page and JavaScript console in Figure 3-21 (Chrome) and
Figure 3-22 (Firefox), the reader can appreciate the effect of the execution of this code.

Figure 3-21. Closing channels and resetting the application in Chrome
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Figure 3-22. Closing channels and resetting the application in Firefox
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CHAPTER 4

The Need for a Signaling Channel

As we anticipated in Chapter 3, a signaling channel is needed in a WebRTC-enabled
application in order to allow for the exchanging of both session descriptions and net‐
work reachability information. Up until now, we have disregarded this specific aspect
by sticking to a local perspective. This turned out to be useful, since it allowed us to just
focus on the details of the WebRTC APIs, while leaving aside all networking-related
aspects. The time is now ripe to also tackle these last issues. In this chapter, we will
describe how we can create a proper signaling channel between any pair of peers that
are interested in successfully setting up a WebRTC-enabled communication session.

The material presented in this chapter is only loosely related to the main topic of the
book. More precisely, we will herein just focus on the creation of the above-mentioned
signaling channel by describing the design and implementation of a very simple Java‐
Script application involving two clients and a server. The example itself should provide
the reader with a set of tools that can be easily reused in a wide set of application sce‐
narios. In the following chapter we will finally put all pieces together in order to complete
the 10-step WebRTC recipe in a distributed setting.

Building Up a Simple Call Flow
As usual, we will continue to embrace the learn-by-example approach in order to let
you figure out how to build a server-assisted signaling channel between two remote
peers. In this chapter, we will focus on the realization of a simple interaction scenario,
as formally depicted in the sequence diagram in Figure 4-1.
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Figure 4-1. Signaling channel example: Sequence diagram
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The diagram in the picture involves three different actors:

• A channel initiator, such as the peer that first takes the initiative of creating a dedi‐
cated communication channel with a remote party

• A signaling server, managing channel creation and acting as a message relaying
node

• A channel joiner, for instance, a remote party joining an already existing channel

The idea is that the channel is created on demand by the server after receiving a specific
request issued by the initiator. As soon as the second peer joins the channel, conversation
can start. Message exchanging always happens through the server, which basically acts
as a transparent relay node. When one of the peers decides to quit an ongoing conver‐
sation, it issues an ad hoc message (called Bye in the figure) towards the server, before
disconnecting. This message is dispatched by the server to the remote party, which also
disconnects, after having sent an acknowledgment back to the server. The receipt of the
acknowledgment eventually triggers the channel reset procedure on the server’s side,
thus bringing the overall scenario back to its original configuration.

Let’s start by building a simple HTML5 page (see Example 4-1), containing an initially
empty <div> element which will be used to track down the evolution of the communi‐
cation between two remote peers interacting through the signaling server.

Example 4-1. Simple signaling channel
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
                                "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title>WebRTC client</title>

</head>

<body>

<script src='/socket.io/socket.io.js'></script>

<div id="scratchPad"></div>

<script type="text/javascript" src="js/simpleNodeClient.js"></script>

</body>
</html>

As you can see from the HTML code, the page includes two JavaScript files. The former
(socket.io.js) refers to the well-known socket.io library for real-time web applications.
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The socket.io JavaScript Library
socket.io is a JavaScript library for real-time web applications. It has two parts: a client-
side library that runs in the browser, and a server-side library for Node.js (see “The
Node.js Software Platform” on page 70.)

The client-side part of socket.io is an event-driven library that primarily uses the
WebSocket protocol, but if needed can fall back onto multiple other methods, such as
Adobe Flash sockets, AJAX long polling, and others, while providing the same interface.
It provides many advanced features, like associating multiple sockets with a server-side
room, broadcasting to multiple sockets, storing data associated with specific clients, and
managing asynchronous I/O.

socket.io can be easily installed with the node packaged modules (npm) tool:

npm install socket.io
    

Once installed, the socket.io.js file has to be copied to a folder where it can be found by
the web server.

The demo application also requires the node-static module, which needs to be installed
as well:

npm install node-static
    

The latter file (simpleNodeClient.js) is presented in the following:

// Get <div> placeholder element from DOM
div = document.getElementById('scratchPad');

// Connect to server
var socket = io.connect('http://localhost:8181');

// Ask channel name from user
channel = prompt("Enter signaling channel name:");

if (channel !== "") {
    console.log('Trying to create or join channel: ', channel);
    // Send 'create or join' to the server
    socket.emit('create or join', channel);
}

// Handle 'created' message
socket.on('created', function (channel){
        console.log('channel ' + channel + ' has been created!');
        console.log('This peer is the initiator...');
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        // Dynamically modify the HTML5 page
        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) + ' --> Channel '
                + channel + ' has been created! </p>');

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> This peer is the initiator...</p>');
});

// Handle 'full' message
socket.on('full', function (channel){
        console.log('channel ' + channel + ' is too crowded! \
                Cannot allow you to enter, sorry :-(');

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) + ' --> \
         channel ' + channel + ' is too crowded! \
                 Cannot allow you to enter, sorry :-( </p>');
});

// Handle 'remotePeerJoining' message
socket.on('remotePeerJoining', function (channel){
        console.log('Request to join ' + channel);
        console.log('You are the initiator!');

        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:red">Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Message from server: request to join channel ' +
                channel + '</p>');
});

// Handle 'joined' message
socket.on('joined', function (msg){
        console.log('Message from server: ' + msg);

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Message from server: </p>');
        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
                msg + '</p>');

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Message from server: </p>');
        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
                msg + '</p>');
});

// Handle 'broadcast: joined' message
socket.on('broadcast: joined', function (msg){
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        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:red">Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Broadcast message from server: </p>');
        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:red">' +
                msg + '</p>');

        console.log('Broadcast message from server: ' + msg);

        // Start chatting with remote peer:
        // 1. Get user's message
        var myMessage = prompt('Insert message to be sent to your peer:', "");

        // 2. Send to remote peer (through server)
        socket.emit('message', {
                channel: channel,
                message: myMessage});
});

// Handle remote logging message from server
socket.on('log', function (array){
        console.log.apply(console, array);
});

// Handle 'message' message
socket.on('message', function (message){
        console.log('Got message from other peer: ' + message);

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Got message from other peer: </p>');
        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
                message + '</p>');

        // Send back response message:
        // 1. Get response from user
        var myResponse = prompt('Send response to other peer:', "");

        // 2. Send it to remote peer (through server)
        socket.emit('response', {
                channel: channel,
                message: myResponse});

});

// Handle 'response' message
socket.on('response', function (response){
        console.log('Got response from other peer: ' + response);

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Got response from other peer: </p>');
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        div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
                response + '</p>');

        // Keep on chatting
        var chatMessage = prompt('Keep on chatting. \
        Write "Bye" to quit conversation', "");

        // User wants to quit conversation: send 'Bye' to remote party
        if(chatMessage == "Bye"){
                div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                        (performance.now() / 1000).toFixed(3) +
                        ' --> Sending "Bye" to server...</p>');
                console.log('Sending "Bye" to server');

                socket.emit('Bye', channel);

                div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                        (performance.now() / 1000).toFixed(3) +
                        ' --> Going to disconnect...</p>');
                console.log('Going to disconnect...');

                // Disconnect from server
                socket.disconnect();
        }else{
                // Keep on going: send response back
                // to remote party (through server)
                socket.emit('response', {
                        channel: channel,
                        message: chatMessage});
        }
});

// Handle 'Bye' message
socket.on('Bye', function (){
        console.log('Got "Bye" from other peer! Going to disconnect...');

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Got "Bye" from other peer!</p>');

        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
                ' --> Sending "Ack" to server</p>');

        // Send 'Ack' back to remote party (through server)
        console.log('Sending "Ack" to server');

        socket.emit('Ack');

        // Disconnect from server
        div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
                (performance.now() / 1000).toFixed(3) +
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                ' --> Going to disconnect...</p>');
        console.log('Going to disconnect...');

        socket.disconnect();
});

The code performs the following actions:

1. Allows the client to connect to the server (through the socket.io library)
2. Prompts the user for the name of the channel she wants to join
3. Sends a create or join request to the server
4. Starts to asynchronously handle server-sent events.

In the remainder of this chapter, we will follow a complete call flow in a step-by-step
fashion. Before doing this, though, we will take a look at the server-side behavior. The
server has been written by leveraging the Node.js JavaScript library.

The Node.js Software Platform
Node.js is an extremely powerful software platform that allows users to easily build
scalable server-side applications with JavaScript. It is based on a single-threaded event
loop management process making use of nonblocking I/O.

The library provides a built-in HTTP server implementation, making it independent
from third-party software components. With Node.js, it is really easy for the program‐
mer to implement a high-performance HTTP server with customized behavior with
just a few lines of code.

Let’s go over the server-side code. It basically looks after the creation of a server instance
listening on port 8181. The code allows for the creation of server-side “rooms” hosting
two client sockets at most. The first client that asks for the creation of a room is the
channel initiator.

After channel creation, the server-side policy is the following:

1. The second client arriving is allowed to join the newly created channel.
2. All other clients are denied access to the room (and are consequently notified of

such an event).
var static = require('node-static');

var http = require('http');

// Create a node-static server instance listening on port 8181
var file = new(static.Server)();
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// We use the http module’s createServer function and
// use our instance of node-static to serve the files
var app = http.createServer(function (req, res) {
  file.serve(req, res);
}).listen(8181);

// Use socket.io JavaScript library for real-time web applications
var io = require('socket.io').listen(app);

// Let's start managing connections...
io.sockets.on('connection', function (socket){

    // Handle 'message' messages
    socket.on('message', function (message) {
        log('S --> Got message: ', message);

        socket.broadcast.to(message.channel).emit('message', \
                message.message);
    });

    // Handle 'create or join' messages
    socket.on('create or join', function (channel) {
        var numClients = io.sockets.clients(channel).length;
        console.log('numclients = ' + numClients);

        // First client joining...
        if (numClients == 0){
            socket.join(channel);
            socket.emit('created', channel);
        // Second client joining...
        } else if (numClients == 1) {
        // Inform initiator...
                io.sockets.in(channel).emit('remotePeerJoining', channel);
                // Let the new peer join channel
        socket.join(channel);

        socket.broadcast.to(channel).emit('broadcast: joined', 'S --> \
            broadcast(): client ' + socket.id + ' joined channel ' \
                        + channel);
        } else { // max two clients
                console.log("Channel full!");
            socket.emit('full', channel);
        }
    });

    // Handle 'response' messages
    socket.on('response', function (response) {
        log('S --> Got response: ', response);

        // Just forward message to the other peer
        socket.broadcast.to(response.channel).emit('response',
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            response.message);
    });

    // Handle 'Bye' messages
    socket.on('Bye', function(channel){
        // Notify other peer
        socket.broadcast.to(channel).emit('Bye');

        // Close socket from server's side
        socket.disconnect();
    });

    // Handle 'Ack' messages
    socket.on('Ack', function () {
        console.log('Got an Ack!');
        // Close socket from server's side
        socket.disconnect();
    });

    // Utility function used for remote logging
    function log(){
        var array = [">>> "];
        for (var i = 0; i < arguments.length; i++) {
                array.push(arguments[i]);
        }
        socket.emit('log', array);
    }
});

We’re now ready to get started with our signaling example walk-through.

Creating the Signaling Channel
We herein focus on the very first steps of the example call flow, as illustrated in Figure 4-2.

Let’s assume that a first client using the Chrome browser loads the HTML5 page of
Example 4-1. The page first connects to the server and then prompts the user for the
name of the channel (Figure 4-3):

...
// Connect to server
var socket = io.connect('http://localhost:8181');

// Ask channel name from user
channel = prompt("Enter signaling channel name:");
...
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Figure 4-2. The first steps: Channel creation

Figure 4-3. The example page loaded in Chrome (channel initiator)

Once the user fills in the channel name field and hits the OK button, the JavaScript code
in the page sends a create or join message to the server:
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...
if (channel !== "") {
      console.log('Trying to create or join channel: ', channel);
      // Send 'create or join' to the server
      socket.emit('create or join', channel);
}
...

Upon reception of the client’s request, the server performs the following actions:

1. Verifies that the mentioned channel is a brand new one (i.e., there are no clients in
it)

2. Associates a server-side room with the channel
3. Allows the requesting client to join the channel
4. Sends back to the client a notification message called created

The following snippet shows this sequence of actions:

...
socket.on('create or join', function (channel) {
    var numClients = io.sockets.clients(channel).length;
    console.log('numclients = ' + numClients);

    // First client joining...
    if (numClients == 0){
        socket.join(channel);
        socket.emit('created', channel);
...

Figure 4-4 shows the server’s console right after the aforementioned actions have been
performed.

When the initiating client receives the server’s answer, it simply logs the event both on
the JavaScript console and inside the <div> element contained in the HTML5 page:

...
// Handle 'created' message
socket.on('created', function (channel){
    console.log('channel ' + channel + ' has been created!');
    console.log('This peer is the initiator...');

    // Dynamically modify the HTML5 page
    div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
        (performance.now() / 1000).toFixed(3) + ' --> Channel ' +
        channel + ' has been created! </p>');

    div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
        (performance.now() / 1000).toFixed(3) +
        ' --> This peer is the initiator...</p>');
});
...
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Figure 4-4. Signaling server managing initiator’s request

The situation described above is illustrated in Figure 4-5.

Figure 4-5. Initiator’s window after channel creation
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Joining the Signaling Channel
Let’s now move on to the second client, the channel joiner, focusing on the call flow
section shown in Figure 4-6.

Figure 4-6. Joining an already existing channel

For the sake of completeness, we will this time use Firefox as the client browser, the look
and feel of which, right after loading the application page, is illustrated in Figure 4-7.

As already described, the client first connects to the server and then sends it a create
or join request. Since this time the requesting peer is not the initiator, the server’s
behavior will be driven by the following code snippet:

...
   } else if (numClients == 1) {
        // Inform initiator...
        io.sockets.in(channel).emit('remotePeerJoining', channel);
                // Let the new peer join channel
        socket.join(channel);

        socket.broadcast.to(channel).emit('broadcast: joined', 'S -->
            broadcast(): client ' + socket.id + ' joined channel ' + channel);
...

Basically, the server will:

1. Notify the channel initiator of the arrival of a new join request.
2. Allow the new client to enter the already existing room.
3. Update (through a broadcast message) the channel initiator about the successful

completion of the join operation, allowing it to prepare to start a new conversation.
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Figure 4-7. The example page loaded in Firefox (channel joiner)

Such a sequence of actions is reported in Figure 4-8, which shows the server’s console
at this stage of the call flow.

Figure 4-8. Signaling server managing joiner’s request
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Figures 4-9 and 4-10 show, respectively, the joiner’s and initiator’s windows right after
the former has successfully joined the signaling channel created by the latter. As the
reader will recognize, this sequence of server-side actions is reported in red in the ini‐
tiator’s HTML5 page in Figure 4-10, which now prompts the user for the very first
message to be exchanged across the server-mediated communication path.

Figure 4-9. Joiner’s window after joining the channel

Figure 4-10. Starting a conversation after channel setup
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1. Note that broadcasting on a channel made of just two peers is equivalent to sending a notification to the peer
who was not the sender of the message itself.

Starting a Server-Mediated Conversation
We have now arrived at the call flow stage reported in Figure 4-11, which basically
captures the core of the application. In this phase, in fact, the initiator sends a first
message to the joiner, who is first notified of this event and then prompted for the
introduction of a proper answer.

Figure 4-11. Starting a conversation

As usual, the client retrieves the user’s input and emits a message towards the server in
order for it to be properly dispatched. On the server’s side, the received message is simply
broadcast1 on the channel:

...
    // Handle 'message' messages
    socket.on('message', function (message) {
        log('S --> Got message: ', message);

        socket.broadcast.to(message.channel).emit('message', message.message);
    });
...

The above described server’s behavior is illustrated in the console snapshot of
Figure 4-12.
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Figure 4-12. Signaling server acting as a relay node

Figure 4-13 shows the remote peer (the joiner) that has just received the message relayed
by the server.

Figure 4-13. Remote peer receiving relayed message from signaling server

80 | Chapter 4: The Need for a Signaling Channel



As evidenced by the figure, the following actions are performed:

1. Logging the received message both on the JavaScript console and on the HTML5
page

2. Prompting the receiver for proper input
3. Sending the receiver’s answer back to the sender (across the signaling channel)

Such a sequence is driven by the following code snippet:

...
// Handle 'message' message
socket.on('message', function (message){
  console.log('Got message from other peer: ' + message);

  div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
    (performance.now() / 1000).toFixed(3) +
    ' --> Got message from other peer: </p>');

  div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
    message + '</p>');

  // Send back response message:
  // 1. Get response from user
  var myResponse = prompt('Send response to other peer:', "");

  // 2. Send it to remote peer (through server)
  socket.emit('response', {
    channel: channel,
        message: myResponse});

});
...

As soon as the receiver hits the OK button on the prompt window in Figure 4-14, the
response message is emitted towards the server, which forwards it to the remote party:

...
   // Handle 'response' messages
    socket.on('response', function (response) {
        log('S --> Got response: ', response);

        // Just forward message to the other peer
        socket.broadcast.to(response.channel).emit('response',
            response.message);
    });
...

This behavior is once again illustrated by the server’s console snapshot in Figure 4-14.
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Figure 4-14. Signaling server relaying remote peer’s response

Continuing to Chat Across the Channel
We are now in the steady-state portion of the application (Figure 4-15), where the two
peers simply take turns in asking the server to relay messages towards the other party.

Figure 4-15. Signaling channel use in the steady state

Message exchanging is achieved on the client’s side through the following code:

82 | Chapter 4: The Need for a Signaling Channel



...
// Handle 'response' message
socket.on('response', function (response){
  console.log('Got response from other peer: ' + response);

  div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
    (performance.now() / 1000).toFixed(3) +
    ' --> Got response from other peer: </p>');

  div.insertAdjacentHTML( 'beforeEnd', '<p style="color:blue">' +
    response + '</p>');

  // Keep on chatting
  var chatMessage = prompt('Keep on chatting. Write \
                            "Bye" to quit conversation', "");
  ...
  ...
     // Keep on going: send response back to remote party (through server)
   socket.emit('response', {
      channel: channel,
      message: chatMessage});
  }
});

Basically, upon reception of a new message, each peer performs the usual logging op‐
erations and then prompts the user for new input. As long as the inserted text has a
value other than Bye, it sends a new message to the remote party. Figure 4-16 shows the
initiator’s window right before a new message is emitted across the channel.

Figure 4-16. Continuing the chat (initiator’s side)
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Figure 4-17 in turn shows the server’s console upon reception of such a message, which
is, as usual, broadcast to the remote party.

Figure 4-17. Continuing the chat (server’s side)

Finally, Figure 4-18 shows reception of the relayed message on the receiver’s side.

Figure 4-18. Continuing the chat (joiner’s side)
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Closing the Signaling Channel
We are now ready to analyze channel teardown, as described in the call flow snippet in
Figure 4-19.

Figure 4-19. Closing the signaling channel

The teardown procedure is actually triggered by the insertion of a Bye message in one
of the two browsers (see Figure 4-20).

What happens behind the scenes is the following:

...
  // User wants to quit conversation: send 'Bye' to remote party
  if(chatMessage == "Bye"){
    div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
        (performance.now() / 1000).toFixed(3) +
        ' --> Sending "Bye" to server...</p>');
    console.log('Sending "Bye" to server');

    socket.emit('Bye', channel);

    div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
        (performance.now() / 1000).toFixed(3) +
        ' --> Going to disconnect...</p>');
        console.log('Going to disconnect...');

   // Disconnect from server
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   socket.disconnect();
   }
...

Figure 4-20. Closing channel through a Bye message

As we can see in the code, the disconnecting client first sends a Bye message across the
channel and immediately thereafter closes the web socket (Figure 4-21).

As soon as the server gets the Bye message, it first relays it to the remote party and then
closes the communication channel towards the disconnecting client:

...
    // Handle 'Bye' messages
    socket.on('Bye', function(channel){
        // Notify other peer
        socket.broadcast.to(channel).emit('Bye');

        // Close socket from server's side
        socket.disconnect();
    });

...
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Figure 4-21. Initiator’s disconnection

Let’s finally analyze the behavior of the peer receiving the Bye message from the remote
party. The peer first logs information about the received message (both on the JavaScript
console and inside the HTML5 page):

...
// Handle 'Bye' message
socket.on('Bye', function (){
  console.log('Got "Bye" from other peer! Going to disconnect...');

  div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
    (performance.now() / 1000).toFixed(3) +
    ' --> Got "Bye" from other peer!</p>');
...

Then, an Ack message is sent back to the server to confirm reception of the disconnec‐
tion request:

...
  div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
    (performance.now() / 1000).toFixed(3) +
    ' --> Sending "Ack" to server</p>');

  // Send 'Ack' back to remote party (through server)
  console.log('Sending "Ack" to server');

  socket.emit('Ack');
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  // Disconnect from server
  div.insertAdjacentHTML( 'beforeEnd', '<p>Time: ' +
    (performance.now() / 1000).toFixed(3) +
    ' --> Going to disconnect...</p>');

  console.log('Going to disconnect...');

  socket.disconnect();
...

Finally, the receiving peer tears down its own connection to the server:

...
  console.log('Going to disconnect...');

  socket.disconnect();
});

The above sequence of actions can be easily identified in the snapshot in Figure 4-22.

Figure 4-22. Remote peer handling relayed disconnection message and disconnecting

The final actions are undertaken on the server’s side. Reception of the Ack message is
logged on the console (see Figure 4-23) and the channel is eventually torn down:
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    // Handle 'Ack' messages
    socket.on('Ack', function () {
        console.log('Got an Ack!');
        // Close socket from server's side
        socket.disconnect();
    });

Figure 4-23. Closing channel on the server’s side
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CHAPTER 5

Putting It All Together: Your First
WebRTC System from Scratch

We are finally ready to put all the pieces together and build our first WebRTC applica‐
tion. In this chapter, by leveraging a signaling server like the one we described in Chap‐
ter 4, we will implement the Browser RTC Trapezoid in a distributed scenario. Basically,
we will take the running example of Chapter 3 and let it also work beyond the limits of
a local perspective.

We will show how to use the signaling channel to allow two peers to exchange user
media information, session descriptions, and ICE protocol candidates. We will also
highlight how the signaling server role proves fundamental only during the setup phase.
Indeed, once the above information has been successfully exchanged, the communica‐
tion paradigm switches to pure peer-to-peer, with the server itself having no involve‐
ment in the actual data exchange phases.

A Complete WebRTC Call Flow
Figures 5-1, 5-2, and 5-3 provide the big picture associated with a complete WebRTC
call flow involving a channel Initiator, a channel Joiner, and a signaling server relaying
messages between them at channel setup time.
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Figure 5-1. WebRTC call flow: Sequence diagram, part 1
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Figure 5-2. WebRTC call flow: Sequence diagram, part 2
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Figure 5-3. WebRTC call flow: Sequence diagram, part 3
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The sequence diagram evolves through the following macrosteps:

1. The Initiator connects to the server and lets it create the signaling channel.
2. The Initiator (after getting the user’s consent) gets access to the user’s media.
3. The Joiner connects to the server and joins the channel.
4. When the Joiner also gets access to the local user’s media, a message is sent to the

Initiator (through the server), triggering the negotiation procedure:

• The Initiator creates a PeerConnection, adds the local stream to it, creates an
SDP offer, and sends it to the Joiner via the signaling server.

• Upon receipt of the SDP offer, the Joiner mirrors the behavior of the Initiator by
creating a PeerConnection object, adding the local stream to it, and building an
SDP answer to be sent back (via the server) to the remote party.

5. During negotiation, the two parties leverage the signaling server to exchange net‐
work reachability information (in the form of ICE protocol candidate addresses).

6. When the Initiator receives the Joiner’s answer to its own offer, the negotiation
procedure is over: the two parties switch to peer-to-peer communication by ex‐
ploiting their respective PeerConnection objects, which have also been equipped
with a data channel that can be used to exchange text messages directly.

In the following sections, we will walk through these steps by analyzing each of them
in further detail. Before doing so, let us introduce the simple web application we devised
as a running example for this chapter; the HTML code is reported in Example 5-1.

Example 5-1. Simple WebRTC application
<!DOCTYPE html>
<html>
<head>

<title>Very simple WebRTC application with a Node.js signaling server</title>

</head>

<body>

<div id='mainDiv'>

    <table border="1" width="100%">
                <tr>
                        <th>
                                Local video
                        </th>
                        <th>
                                Remote video
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                        </th>
                </tr>
                <tr>
                        <td>
                                <video id="localVideo" autoplay></video>
                        </td>
                        <td>
                                <video id="remoteVideo" autoplay></video>
                        </td>
                </tr>
                <tr>
                        <td align="center">
                                <textarea rows="4" cols="60"
                    id="dataChannelSend" disabled
                                placeholder="This will be enabled once
                    the data channel is up...">
                </textarea>
                        </td>
                        <td align="center">
                                <textarea rows="4" cols="60"
                    id="dataChannelReceive" disabled>
                </textarea>
                        </td>
                </tr>
                <tr>
                        <td align="center">
                                <button id="sendButton" disabled>Send</button>
                        </td>
                        <td></td>
                </tr>
        </table>
</div>

<script src='/socket.io/socket.io.js'></script>
<script src='js/lib/adapter.js'></script>
<script src='js/completeNodeClientWithDataChannel.js'></script>

</body>
</html>

Local video, as well as local data channel information, are shown on the left side of the
page, whereas remote video and data are reproduced on the right side of the window.
The page refers to three script files, the first of which is the already introduced sock
et.io library (see “The socket.io JavaScript Library” on page 66). As to the second file
(adapter.js), it is a handy JavaScript shim library that helps the programmer by properly
abstracting browser prefixes, as well as other browser differences and changes in the
way vendors are currently interpreting the specs. Finally, completeNodeClientWithDa‐
taChannel.js contains the actual client code and is presented in Example 5-2 in its en‐
tirety for the benefit of the reader. We will dig into the details of this file in the remainder
of this chapter.
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Example 5-2. completeNodeClientWithDataChannel.js
'use strict';

// Look after different browser vendors' ways of calling the getUserMedia()
// API method:
// Opera --> getUserMedia
// Chrome --> webkitGetUserMedia
// Firefox --> mozGetUserMedia
navigator.getUserMedia = navigator.getUserMedia ||
    navigator.webkitGetUserMedia || navigator.mozGetUserMedia;

// Clean-up function:
// collect garbage before unloading browser's window
window.onbeforeunload = function(e){
        hangup();
}

// Data channel information
var sendChannel, receiveChannel;
var sendButton = document.getElementById("sendButton");
var sendTextarea = document.getElementById("dataChannelSend");
var receiveTextarea = document.getElementById("dataChannelReceive");

// HTML5 <video> elements
var localVideo = document.querySelector('#localVideo');
var remoteVideo = document.querySelector('#remoteVideo');

// Handler associated with Send button
sendButton.onclick = sendData;

// Flags...
var isChannelReady = false;
var isInitiator = false;
var isStarted = false;

// WebRTC data structures
// Streams
var localStream;
var remoteStream;
// PeerConnection
var pc;

// PeerConnection ICE protocol configuration (either Firefox or Chrome)
var pc_config = webrtcDetectedBrowser === 'firefox' ?
  {'iceServers':[{'url':'stun:23.21.150.121'}]} : // IP address
  {'iceServers': [{'url': 'stun:stun.l.google.com:19302'}]};

var pc_constraints = {
  'optional': [
    {'DtlsSrtpKeyAgreement': true}
  ]};
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var sdpConstraints = {};

// Let's get started: prompt user for input (room name)
var room = prompt('Enter room name:');

// Connect to signaling server
var socket = io.connect("http://localhost:8181");

// Send 'Create or join' message to singnaling server
if (room !== '') {
  console.log('Create or join room', room);
  socket.emit('create or join', room);
}

// Set getUserMedia constraints
var constraints = {video: true, audio: true};

// From this point on, execution proceeds based on asynchronous events...

// getUserMedia() handlers...

function handleUserMedia(stream) {
        localStream = stream;
        attachMediaStream(localVideo, stream);
        console.log('Adding local stream.');
        sendMessage('got user media');
}

function handleUserMediaError(error){
        console.log('navigator.getUserMedia error: ', error);
}

// Server-mediated message exchanging...

// 1. Server-->Client...

// Handle 'created' message coming back from server:
// this peer is the initiator
socket.on('created', function (room){
  console.log('Created room ' + room);
  isInitiator = true;

  // Call getUserMedia()
  navigator.getUserMedia(constraints, handleUserMedia, handleUserMediaError);
  console.log('Getting user media with constraints', constraints);

  checkAndStart();
});

// Handle 'full' message coming back from server:
// this peer arrived too late :-(

98 | Chapter 5: Putting It All Together: Your First WebRTC System from Scratch



socket.on('full', function (room){
  console.log('Room ' + room + ' is full');
});

// Handle 'join' message coming back from server:
// another peer is joining the channel
socket.on('join', function (room){
  console.log('Another peer made a request to join room ' + room);
  console.log('This peer is the initiator of room ' + room + '!');
  isChannelReady = true;
});

// Handle 'joined' message coming back from server:
// this is the second peer joining the channel
socket.on('joined', function (room){
  console.log('This peer has joined room ' + room);
  isChannelReady = true;

  // Call getUserMedia()
  navigator.getUserMedia(constraints, handleUserMedia, handleUserMediaError);
  console.log('Getting user media with constraints', constraints);
});

// Server-sent log message...
socket.on('log', function (array){
  console.log.apply(console, array);
});

// Receive message from the other peer via the signaling server
socket.on('message', function (message){
  console.log('Received message:', message);
  if (message === 'got user media') {
      checkAndStart();
  } else if (message.type === 'offer') {
    if (!isInitiator && !isStarted) {
      checkAndStart();
    }
    pc.setRemoteDescription(new RTCSessionDescription(message));
    doAnswer();
  } else if (message.type === 'answer' && isStarted) {
    pc.setRemoteDescription(new RTCSessionDescription(message));
  } else if (message.type === 'candidate' && isStarted) {
    var candidate = new RTCIceCandidate({sdpMLineIndex:message.label,
      candidate:message.candidate});
    pc.addIceCandidate(candidate);
  } else if (message === 'bye' && isStarted) {
    handleRemoteHangup();
  }
});

// 2. Client-->Server
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// Send message to the other peer via the signaling server
function sendMessage(message){
  console.log('Sending message: ', message);
  socket.emit('message', message);
}

// Channel negotiation trigger function
function checkAndStart() {

  if (!isStarted && typeof localStream != 'undefined' && isChannelReady) {
        createPeerConnection();
    isStarted = true;
    if (isInitiator) {
      doCall();
    }
  }
}

// PeerConnection management...
function createPeerConnection() {
  try {
    pc = new RTCPeerConnection(pc_config, pc_constraints);

    pc.addStream(localStream);

    pc.onicecandidate = handleIceCandidate;
    console.log('Created RTCPeerConnnection with:\n' +
      '  config: \'' + JSON.stringify(pc_config) + '\';\n' +
      '  constraints: \'' + JSON.stringify(pc_constraints) + '\'.');
  } catch (e) {
    console.log('Failed to create PeerConnection, exception: ' + e.message);
    alert('Cannot create RTCPeerConnection object.');
      return;
  }

  pc.onaddstream = handleRemoteStreamAdded;
  pc.onremovestream = handleRemoteStreamRemoved;

  if (isInitiator) {
    try {
      // Create a reliable data channel
      sendChannel = pc.createDataChannel("sendDataChannel",
        {reliable: true});
      trace('Created send data channel');
    } catch (e) {
      alert('Failed to create data channel. ');
      trace('createDataChannel() failed with exception: ' + e.message);
    }
    sendChannel.onopen = handleSendChannelStateChange;
    sendChannel.onmessage = handleMessage;
    sendChannel.onclose = handleSendChannelStateChange;
  } else { // Joiner
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    pc.ondatachannel = gotReceiveChannel;
  }
}

// Data channel management
function sendData() {
  var data = sendTextarea.value;
  if(isInitiator) sendChannel.send(data);
  else receiveChannel.send(data);
  trace('Sent data: ' + data);
}

// Handlers...

function gotReceiveChannel(event) {
  trace('Receive Channel Callback');
  receiveChannel = event.channel;
  receiveChannel.onmessage = handleMessage;
  receiveChannel.onopen = handleReceiveChannelStateChange;
  receiveChannel.onclose = handleReceiveChannelStateChange;
}

function handleMessage(event) {
  trace('Received message: ' + event.data);
  receiveTextarea.value += event.data + '\n';
}

function handleSendChannelStateChange() {
  var readyState = sendChannel.readyState;
  trace('Send channel state is: ' + readyState);
  // If channel ready, enable user's input
  if (readyState == "open") {
    dataChannelSend.disabled = false;
    dataChannelSend.focus();
    dataChannelSend.placeholder = "";
    sendButton.disabled = false;
  } else {
    dataChannelSend.disabled = true;
    sendButton.disabled = true;
  }
}

function handleReceiveChannelStateChange() {
  var readyState = receiveChannel.readyState;
  trace('Receive channel state is: ' + readyState);
  // If channel ready, enable user's input
  if (readyState == "open") {
            dataChannelSend.disabled = false;
            dataChannelSend.focus();
            dataChannelSend.placeholder = "";
            sendButton.disabled = false;
          } else {
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            dataChannelSend.disabled = true;
            sendButton.disabled = true;
          }
}

// ICE candidates management
function handleIceCandidate(event) {
  console.log('handleIceCandidate event: ', event);
  if (event.candidate) {
    sendMessage({
      type: 'candidate',
      label: event.candidate.sdpMLineIndex,
      id: event.candidate.sdpMid,
      candidate: event.candidate.candidate});
  } else {
    console.log('End of candidates.');
  }
}

// Create Offer
function doCall() {
  console.log('Creating Offer...');
  pc.createOffer(setLocalAndSendMessage, onSignalingError, sdpConstraints);
}

// Signaling error handler
function onSignalingError(error) {
        console.log('Failed to create signaling message : ' + error.name);
}

// Create Answer
function doAnswer() {
  console.log('Sending answer to peer.');
  pc.createAnswer(setLocalAndSendMessage, onSignalingError, sdpConstraints);
}

// Success handler for both createOffer()
// and createAnswer()
function setLocalAndSendMessage(sessionDescription) {
  pc.setLocalDescription(sessionDescription);
  sendMessage(sessionDescription);
}

// Remote stream handlers...

function handleRemoteStreamAdded(event) {
  console.log('Remote stream added.');
  attachMediaStream(remoteVideo, event.stream);
  console.log('Remote stream attached!!.');
  remoteStream = event.stream;
}
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function handleRemoteStreamRemoved(event) {
  console.log('Remote stream removed. Event: ', event);
}

// Clean-up functions...

function hangup() {
  console.log('Hanging up.');
  stop();
  sendMessage('bye');
}

function handleRemoteHangup() {
  console.log('Session terminated.');
  stop();
  isInitiator = false;
}

function stop() {
  isStarted = false;
  if (sendChannel) sendChannel.close();
  if (receiveChannel) receiveChannel.close();
  if (pc) pc.close();
  pc = null;
  sendButton.disabled=true;
}

Based on the information contained in Chapter 4, the reader should face no issues in
understanding the behavior of the signaling server, which has been written as a Node.js
application and whose code is reproduced in the following:

var static = require('node-static');
var http = require('http');
// Create a node-static server instance
var file = new(static.Server)();

// We use the http module’s createServer function and
// rely on our instance of node-static to serve the files
var app = http.createServer(function (req, res) {
  file.serve(req, res);
}).listen(8181);

// Use socket.io JavaScript library for real-time web applications
var io = require('socket.io').listen(app);

// Let's start managing connections...
io.sockets.on('connection', function (socket){

        // Handle 'message' messages
    socket.on('message', function (message) {
        log('S --> got message: ', message);
        // channel-only broadcast...
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        socket.broadcast.to(message.channel).emit('message', message);
    });

    // Handle 'create or join' messages
    socket.on('create or join', function (room) {
        var numClients = io.sockets.clients(room).length;

        log('S --> Room ' + room + ' has ' + numClients + ' client(s)');
        log('S --> Request to create or join room', room);

        // First client joining...
        if (numClients == 0){
            socket.join(room);
            socket.emit('created', room);
        } else if (numClients == 1) {
        // Second client joining...
            io.sockets.in(room).emit('join', room);
            socket.join(room);
            socket.emit('joined', room);
        } else { // max two clients
            socket.emit('full', room);
        }
    });

    function log(){
        var array = [">>> "];
        for (var i = 0; i < arguments.length; i++) {
                array.push(arguments[i]);
        }
        socket.emit('log', array);
    }
});

Basically, the server looks after both channel management operations (creation upon
reception of the Initiator’s request, join when the second peer arrives) and message
relaying (at session setup time). As already anticipated, it completes its tasks right after
a peer-to-peer session between the two browsers sharing the signaling channel has been
successfully instantiated.

Let’s now get started with our complete WebRTC example walk-through.

Initiator Joining the Channel
Figure 5-4 shows the sequence of actions undertaken by the Initiator when the sample
WebRTC application described in the previous section is started.
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Figure 5-4. Initiator joining the channel

As shown in the figure, as soon as the web page is loaded in the browser, the user is first
prompted for the channel name; then, the peer connects to the signaling server and
sends it a create or join message. This is reported in the JavaScript snippet below and
also shown in the snapshot in Figure 5-5:
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...
// Let's get started: prompt user for input (room name)
var room = prompt('Enter room name:');

// Connect to signalling server
var socket = io.connect("http://localhost:8181");

// Send 'create' or 'join' message to singnalling server
if (room !== '') {
  console.log('Create or join room', room);
  socket.emit('create or join', room);
}
...

Figure 5-5. Initiator joining with Chrome browser

When the server receives the create or join message, it recognizes the peer as the
Initiator and creates the server-side room associated with the required channel. It even‐
tually sends a created message back to the client:

...
// Handle 'create or join' messages
    socket.on('create or join', function (room) {
        var numClients = io.sockets.clients(room).length;

        log('S --> Room ' + room + ' has ' + numClients + ' client(s)');
        log('S --> Request to create or join room', room);
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        // First client joining...
        if (numClients == 0){
            socket.join(room);
            socket.emit('created', room);
        } else if (numClients == 1) {
        ...
...

Figure 5-6 shows the server’s console at this stage.

Figure 5-6. Signaling server creating the signaling channel

We have now reached the point where the client gets a created message back from the
server and realizes it is going to play the role of the channel initiator:

// Handle 'created' message coming back from server:
// this peer is the initiator
socket.on('created', function (room){
  console.log('Created room ' + room);
  isInitiator = true;
  ...

The next action undertaken by the client is getting access to the user’s media through
the getUserMedia() API call:
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...
  // Call getUserMedia()
  navigator.getUserMedia(constraints, handleUserMedia, handleUserMediaError);
  console.log('Getting user media with constraints', constraints);
...

Figure 5-7 shows the browser’s window right before getting the user’s consent.

Figure 5-7. Initiator asking for user’s consent

The following snapshot reports the actions performed by the handleUserMedia() suc‐
cess handler: (1) the retrieved video stream is attached to the local <video> element of
the HTML page; and (2) a got user media message is sent to the server.

...
function handleUserMedia(stream) {
    localStream = stream;
        attachMediaStream(localVideo, stream);
        console.log('Adding local stream.');
        sendMessage('got user media');
}
...

The effect of the first of these actions is shown in Figure 5-8.
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Figure 5-8. Initiator after user’s consent

The JavaScript code used to send messages to the server is given below:

...
// Send message to the other peer via the signaling server
function sendMessage(message){
  console.log('Sending message: ', message);
  socket.emit('message', message);
}
...

Server-side behavior associated with the reception of a generic message is shown in the
following excerpt. The server first sends a logging message (which is also visible in the
browser’s console in the lower part of Figure 5-8) back to the client and then broadcasts
the received message to the remote party, if it exists (which is not the case at this point
of the call flow):

...
// Handle 'message' messages
    socket.on('message', function (message) {
        log('S --> got message: ', message);
        // channel-only broadcast...
        socket.broadcast.to(message.channel).emit('message', message);
    });
...
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The last action performed by the channel initiator is the execution of the checkAnd
Start() function, which, at this stage of the overall call flow, actually does nothing,
since the channel is not yet ready:

...
function checkAndStart() {
  // Do nothing if channel not ready...
  if (!isStarted && typeof localStream != 'undefined' && isChannelReady) {
    ...
...

Joiner Joining the Channel
Let’s now figure out what happens when the second peer joins the channel. The relevant
sequence of actions is illustrated in Figure 5-9.

The first part of the diagram mirrors the behavior of the Initiator, prompting the user
for a channel name and sending a create or join message to the server. Message han‐
dling on the server’s side (with the server’s console reported in Figure 5-10) this time
envisages that a join message is sent to the Initiator (who can now mark the channel
as ready), immediately followed by a joined response towards the Joiner:

...
    } else if (numClients == 1) {
    // Second client joining...
        io.sockets.in(room).emit('join', room);
        socket.join(room);
        socket.emit('joined', room);
    } else { // max two clients
...

The following excerpt shows the client-side actions associated with the reception of a
join message:

...
// Handle 'join' message coming back from server:
// another peer is joining the channel
socket.on('join', function (room){
  console.log('Another peer made a request to join room ' + room);
  console.log('This peer is the initiator of room ' + room + '!');
  isChannelReady = true;
});
...

Finally, the following JavaScript illustrates how the client realizes that it is playing the
Joiner’s role since it gets back a joined response to the create or join request:
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Figure 5-9. Joiner joining the channel

...
// Handle 'joined' message coming back from server:
// this is the second peer joining the channel
socket.on('joined', function (room){
  console.log('This peer has joined room ' + room);
  isChannelReady = true;
});
...
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Figure 5-10. Signaling server managing Joiner’s request

From this point on, the remaining actions performed by the Joiner at this stage of the
negotiation are exactly the same as the ones we already described when looking at the
Initiator’s role in the previous section: (1) access local media (waiting for the user’s
consent); (2) attach local video to the HTML page; and (3) send a got user media
message to the remote peer via the signaling server.

Initiator Starting Negotiation
Upon reception of the got user media message relayed by the server, the Initiator once
again activates the checkAndStart() function, which is this time actually executed,
since the boundary conditions have now changed: the channel is ready and the local
stream has already been made available by the getUserMedia() API call.

The UML snapshot in Figure 5-11 and the following JavaScript code indicate that the
Initiator (1) creates a PeerConnection object; (2) marks the channel as started; and (3)
activates the doCall() JavaScript function.

...
// Channel negotiation trigger function
function checkAndStart() {
  if (!isStarted && typeof localStream != 'undefined' && isChannelReady) {
    createPeerConnection();
    isStarted = true;
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    if (isInitiator) {
      doCall();
    }
  }
}
...

Digging into the details of the above actions, the following code excerpt shows that a
number of handlers are attached to the PeerConnection object in order to properly
manage both ICE candidate addresses and remote stream addition and removal. Fur‐
thermore, the PeerConnection is also equipped with a data channel that will be used to
exchange text data with the Joiner, in a peer-to-peer fashion:

...
function createPeerConnection() {
  try {
    pc = new RTCPeerConnection(pc_config, pc_constraints);

    pc.addStream(localStream);

    pc.onicecandidate = handleIceCandidate;
    console.log('Created RTCPeerConnnection with:\n' +
      '  config: \'' + JSON.stringify(pc_config) + '\';\n' +
      '  constraints: \'' + JSON.stringify(pc_constraints) + '\'.');
  } catch (e) {
    console.log('Failed to create PeerConnection, exception: ' + e.message);
    alert('Cannot create RTCPeerConnection object.');
      return;
  }

  pc.onaddstream = handleRemoteStreamAdded;
  pc.onremovestream = handleRemoteStreamRemoved;

  if (isInitiator) {
    try {
      // Create a reliable data channel
      sendChannel = pc.createDataChannel("sendDataChannel",
        {reliable: true});
      trace('Created send data channel');
    } catch (e) {
      alert('Failed to create data channel. ');
      trace('createDataChannel() failed with exception: ' + e.message);
    }
    sendChannel.onopen = handleSendChannelStateChange;
    sendChannel.onmessage = handleMessage;
    sendChannel.onclose = handleSendChannelStateChange;
  } else { // Joiner
    pc.ondatachannel = gotReceiveChannel;
  }
}
...
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Figure 5-11. Initiator starting negotiation
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With respect to the doCall() function, it basically calls the createOffer() method on
the available PeerConnection, asking the browser to properly build an SDP (Session
Description Protocol) object representing the Initiator’s media and capabilities to be
communicated to the remote party:

...
function doCall() {
  console.log('Creating Offer...');
  pc.createOffer(setLocalAndSendMessage,
                    onSignalingError, sdpConstraints);
}
...

The success handler associated with this call is in charge of both associating the browser-
provided SDP with the PeerConnection and transferring it to the remote peer, via the
signaling server:

...
function setLocalAndSendMessage(sessionDescription) {
  pc.setLocalDescription(sessionDescription);
  sendMessage(sessionDescription);
}
...

Joiner Managing Initiator’s Offer
Figure 5-12 shows the actions undertaken by the Joiner upon reception of the Initiator’s
SDP Offer.

Indeed, as indicated by this next JavaScript snippet, when the offer arrives at the Joiner’s
side, first the checkAndStart() function is run:

...
// Receive message from the other peer via the signalling server
socket.on('message', function (message){
  console.log('Received message:', message);
  if (message === 'got user media') {
        ...
  } else if (message.type === 'offer') {
    if (!isInitiator && !isStarted) {
      checkAndStart();
    }
    pc.setRemoteDescription(new RTCSessionDescription(message));
    doAnswer();
  } else if (message.type === 'answer' && isStarted) {
...
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Figure 5-12. Joiner’s actions after getting Initiator’s Offer

When executed by the Joiner, this function creates the Joiner’s PeerConnection object
and sets the isStarted flag:

...
function checkAndStart() {

  if (!isStarted && typeof localStream != 'undefined' && isChannelReady) {
    createPeerConnection();
    isStarted = true;
    if (isInitiator) {
      ...
    }
  }
}
...

As will be explained in “Joiner’s Answer” on page 121, once done with the checkAnd
Start() function, the Joiner still has to both configure its local PeerConnection and
properly build the SDP Answer to be sent back to the Initiator. In the following, we will
first briefly discuss the ICE candidate exchanging procedures required on both sides.
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ICE Candidate Exchanging
As we already anticipated, one of the main tasks of the signaling server is to enable the
exchange of network reachability information between Initiator and Joiner to make it
possible to establish a flow of media packets between the two. The Interactive Connec‐
tivity Establishment (ICE), RFC5245, technique allows peers to discover enough infor‐
mation about each other’s topology to potentially find one or more communication
paths between each other.

Such information is locally gathered by the ICE Agent associated with each RTCPeer
Connection object. The ICE Agent is responsible for:

• Gathering local IP, port tuple candidates
• Performing connectivity checks between peers
• Sending connection keepalives

Once a session description (either local or remote) is set, the local ICE agent automat‐
ically begins the process of discovering all of the possible candidates for the local peer:

1. The ICE agent queries the operating system for local IP addresses.
2. If configured, it queries an external STUN server to retrieve the public IP address

and port tuple of the peer.
3. If configured, the agent also uses the TURN server as a last resort. If the peer-to-

peer connectivity check fails, the media flow will be relayed through the TURN
server.

Whenever a new candidate (i.e., IP, port tuple) is discovered, the ICE Agent automati‐
cally registers it with the RTCPeerConnection object and notifies the application via a
callback function (onIceCandidate). The application can decide to transfer each can‐
didate as soon as it is discovered (Trickle ICE) to the remote party or decide to wait for
the ICE gathering phase to complete and then send all of the candidates at once.

The sequence of events associated with this specific phase is illustrated in Figure 5-13.
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Figure 5-13. Server-mediated ICE candidate exchange procedure

The figure shows that whenever the browser raises an IceCandidate event (because a
new ICE candidate has been gathered), the handleIceCandidate() handler is activated.
This handler wraps the retrieved candidate inside a dedicated candidate message to be
sent to the remote party, via the server:

...
function handleIceCandidate(event) {
  console.log('handleIceCandidate event: ', event);
  if (event.candidate) {
    sendMessage({
      type: 'candidate',
      label: event.candidate.sdpMLineIndex,
      id: event.candidate.sdpMid,
      candidate: event.candidate.candidate});
  } else {
    console.log('End of candidates.');
  }
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}
...

As usual, the server simply acts as a mediator between the two negotiating parties, as
witnessed by the console snapshot in Figure 5-14, which shows how the server relays
both the SDP description sent by the Initiator and the ICE candidate addresses retrieved
by the two interacting peers.

Figure 5-14. Server-mediated negotiation logs

Finally, the JavaScript snippet presented in the following indicates that the two peers
add the received candidates to their own PeerConnection objects as soon as they arrive
from the signaling server:

...
// Receive message from the other peer via the signaling server
socket.on('message', function (message){
  console.log('Received message:', message);
  if (message === 'got user media') {
        ...
  } else if (message.type === 'offer') {
        ...
  } else if (message.type === 'answer' && isStarted) {
        ...
  } else if (message.type === 'candidate' && isStarted) {
    var candidate = new RTCIceCandidate({sdpMLineIndex:message.label,
      candidate:message.candidate});
    pc.addIceCandidate(candidate);
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  } else if (message === 'bye' && isStarted) {
        ...
  }
});
...

Once the ICE candidates are received by the other peer, the remote session description
is set on the RTCPeerConnection object (setRemoteDescription), so the ICE Agent can
begin to peform the connectivity check to see if it can reach the other peer.

At this point, each ICE agent has a complete list of both its candidates and its peer’s
candidates. It pairs them up. To see which pairs work, each agent schedules a series of
prioritized checks: local IP addresses are checked first, then public, and TURN is used
as a last resort. Each check is a STUN request/response transaction that the client will
perform on a particular candidate pair by sending a STUN request from the local can‐
didate to the remote candidate.

If one of the pair candidates works, then there is a routing path for a peer-to-peer
connection. Conversely, if all candidates fail, then either the RTCPeerConnection is
marked as failed or the connection falls back to a TURN relay server to establish the
connection.

Once a connection is established, the ICE Agent continues to issue periodic STUN
requests to the other peer. This serves as a connection keepalive.

Trickle ICE
Trickle ICE is a proposed extension to the ICE protocol where instead of waiting for the
ICE gathering process to complete, it is possible to send incremental updates to the other
peer. This helps accelerate the overall setup phase.

The Trickle ICE mechanism involves the following steps:

• Both peers exchange SDP offers without ICE candidates.
• ICE candidates are sent via the signaling channel as soon they are discovered.
• ICE connectivity checks are run as soon as the new candidate descriptions are

available.
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Joiner’s Answer
Now that we’re done with ICE candidate exchange, let’s get the train of thought back on
track. We were at the point (“Joiner Managing Initiator’s Offer” on page 115) where the
Joiner handles Initiator’s Offer by creating its own PeerConnection object. As sketched
in Figure 5-15, once done with this, the Joiner first associates the received SDP with the
newly instantiated PeerConnection and immediately thereafter calls the doAnswer()
JavaScript function.

Figure 5-15. Joiner’s Answer to Initiator’s Offer
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The snippet below highlights this specific part of the Joiner’s algorithm:

...
// Receive message from the other peer via the signaling server
socket.on('message', function (message){
  console.log('Received message:', message);
  if (message === 'got user media') {
        ...
  } else if (message.type === 'offer') {
    ...
    pc.setRemoteDescription(new RTCSessionDescription(message));
    doAnswer();
  } else if (message.type === 'answer' && isStarted) {
...

The doAnswer() function basically handles the creation of an SDP Answer to be asso‐
ciated with the received Offer:

...
function doAnswer() {
  console.log('Sending answer to peer.');
  pc.createAnswer(setLocalAndSendMessage,
                    onSignalingError, sdpConstraints);
}
...

Similarly to the createOffer() method, the createAnswer() call sets up a success
handler to be called as soon as the browser makes the local SDP available. The role of
such a handler is to first set the browser-provided SDP as the local session description
associated with Joiner’s PeerConnection and then send such a description to the remote
party via the signaling server:

...
function setLocalAndSendMessage(sessionDescription) {
  pc.setLocalDescription(sessionDescription);
  sendMessage(sessionDescription);
}
...

When the Initiator receives Joiner’s Answer from the server, it can properly set it as the
remote session description associated with its local PeerConnection object:

...
// Receive message from the other peer via the signaling server
socket.on('message', function (message){
  console.log('Received message:', message);
  if (message === 'got user media') {
        ...
  } else if (message.type === 'offer') {
        ...
  } else if (message.type === 'answer' && isStarted) {
    pc.setRemoteDescription(new RTCSessionDescription(message));
  } else if (message.type === 'candidate' && isStarted) {
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        ...
  } else if (message === 'bye' && isStarted) {
        ...
  }
});
...

Going Peer-to-Peer!
We’re finally all set! The two peers have successfully exchanged session descriptions and
network reachability information. Two PeerConnection objects have been properly set
up and configured thanks to the mediation of the signaling server. As depicted in
Figure 5-16, a bidirectional multimedia communication channel is now available as a
direct transport means between the two browsers. The server is now done with its task
and will be from now on completely bypassed by the two communicating peers.

Figure 5-16. Going peer-to-peer after communication setup

The two snapshots in Figures 5-17 and 5-18 show, respectively, the Joiner’s and the
Initiator’s windows right after successful channel negotiation. You can see in both figures
that each peer now has available local and remote views, as well as two text areas that
can be used, respectively, to send direct messages to the remote party and to log direct
messages received from the remote party.
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Figure 5-17. Communication established in Chrome: Joiner’s side

Figure 5-18. Communication established in Chrome: Initiator’s side
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Using the Data Channel
In this subsection we will delve into the details of configuring and using the data channel.
Actually, the data channel is created by the Initiator as part of the createPeerConnec
tion() function code:

...
function createPeerConnection() {
  try {
    pc = new RTCPeerConnection(pc_config, pc_constraints);
    ...
  } catch (e) {
    ...
  }
  pc.onaddstream = handleRemoteStreamAdded;
  pc.onremovestream = handleRemoteStreamRemoved;

  if (isInitiator) {
    try {
      // Create a reliable data channel
      sendChannel = pc.createDataChannel("sendDataChannel",
                                            {reliable: true});
      trace('Created send data channel');
    } catch (e) {
        ...
    }
    sendChannel.onopen = handleSendChannelStateChange;
    sendChannel.onmessage = handleMessage;
    sendChannel.onclose = handleSendChannelStateChange;
  } else { // Joiner
    pc.ondatachannel = gotReceiveChannel;
  }
}
...

The above snippet shows how a number of handlers are associated with the data channel.
As an example, we present below the handleSendChannelStateChange() function,
which takes care of enabling both the sender’s text area and the Send button as soon as
the channel reaches the open state:

...
function handleSendChannelStateChange() {
  var readyState = sendChannel.readyState;
  trace('Send channel state is: ' + readyState);
  if (readyState == "open") {
    dataChannelSend.disabled = false;
    dataChannelSend.focus();
    dataChannelSend.placeholder = "";
    sendButton.disabled = false;
  } else {
    dataChannelSend.disabled = true;
    sendButton.disabled = true;
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  }
}
...

The sendData() JavaScript function shown below is configured as a handler for the
Send button and performs the following actions: (1) it collects text inserted by the user
in the sendTextArea; and (2) it sends such text across the instantiated data channel.

...
// Handler associated with Send button
sendButton.onclick = sendData;
...
function sendData() {
  var data = sendTextarea.value;
  if(isInitiator) sendChannel.send(data);
  else receiveChannel.send(data);
  trace('Sent data: ' + data);
}
...

Figure 5-19 shows the Initiator’s window right after having sent a text message across
the data channel.

Figure 5-19. Using the data channel: Initiator’s side

Once the message arrives at the other side, the handleMessage() function is triggered.
This function, which is shown below, simply takes the transferred data and logs them
inside the receiveTextArea element of the HTML page:
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...
function handleMessage(event) {
  trace('Received message: ' + event.data);
  receiveTextarea.value += event.data + '\n';
}
...

This is also shown in the snapshot contained in Figure 5-20.

Figure 5-20. Using the data channel: Joiner’s side

Moving on to the receive channel, as soon as Joiner’s browser raises the dataChannel
event, the gotReceiveChannel() function is activated. This handler sets up the receive
channel and properly configures it for the management of channel-related events:

...
function gotReceiveChannel(event) {
  trace('Receive Channel Callback');
  receiveChannel = event.channel;
  receiveChannel.onmessage = handleMessage;
  receiveChannel.onopen = handleReceiveChannelStateChange;
  receiveChannel.onclose = handleReceiveChannelStateChange;
}
...

Figures 5-21 and 5-22 show, respectively, the Joiner sending back an answer to the
Initiator across the data channel and the Initiator receiving the answer and logging it
inside the data channel text area.
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Figure 5-21. Data channel: Joiner answering Initiator’s message

Figure 5-22. Data channel: Initiator getting Joiner’s answer
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A Quick Look at the Chrome WebRTC Internals Tool
In this last section, we will provide some information about the WebRTC-specific de‐
bugging tools made available by Google Chrome. Indeed, when you’re using a WebRTC-
enabled web application, you can monitor its status by opening a new tab and entering
chrome://webrtc-internals/ inside the tab’s location bar. For the case of our sample ap‐
plication, a snapshot of the webrtc-internals tab is presented in Figure 5-23.

Figure 5-23. Active PeerConnections

As shown in the figure, the logging page reports information about the active
PeerConnection objects. In our case, since we’re running both the Initiator and the
Joiner on the same machine, we see two active PeerConnection instances, associated,
respectively, with the Initiator (PeerConnection71221-1) and with the Joiner
(PeerConnection71229-1). By clicking on one of the reported identifiers, fine-grained
information about the related PeerConnection appears. As an example, Figures 5-24
and 5-25 show, respectively, the Initiator’s Offer and corresponding Joiner’s Answer in
the form of SDP objects. In the same figures, you can also see a list of all events generated
by the browser while processing the call.
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Figure 5-24. The SDP Offer

Figure 5-25. The SDP Answer
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Chrome is also very good at reporting channel statistics for all of the media involved in
a peer-to-peer exchange. As an example, you can see in Figure 5-26 that channel infor‐
mation (channel creation timestamp, browser component handling the channel, local
and remote channel certificates for secure information exchanging) is reported for au‐
dio, video, and data channels.

Figure 5-26. Channel statistics in text format

Figure 5-27 instead reports, in graphical format, detailed information about both
network-related (estimated available bandwidth, packets sent per second, average
round-trip time, etc.) and encoding-related (target encoding bit rate, actual encoding
bit rate, etc.) information about media (i.e., both audio and video) streams.
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Figure 5-27. Channel statistics in graphical format

Finally, Figure 5-28 illustrates how the browser is actually in charge of both keeping
track of ICE protocol machine state changes and generating the related events for the
overlying application.

Figure 5-28. Signaling state machine with ICE candidate events
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CHAPTER 6

An Introduction to WebRTC API’s
Advanced Features

In the previous chapters, we described and discussed a simple scenario: a browser talking
directly to another browser. The WebRTC APIs are designed around the one-to-one
communication scenario, which represents the easiest to manage and deploy. As we
illustrated in previous chapters, the basic WebRTC features are sufficient to implement
the one-to-one scenario since the built-in audio and video engines of the browser are
responsible for optimizing the delivery of the media streams by adapting them to match
the available bandwidth and to fit the current network conditions.

In this last chapter we will briefly talk about the conferencing scenario and then list
other advanced WebRTC features and mechanisms that are still under active discussion
and development within the W3C WebRTC working group (at the time of writing in
early 2014).

Conferencing
In a WebRTC conferencing scenario (or N-way call), each browser has to receive and
handle the media streams generated by the other N-1 browsers, as well as deliver its
own generated media streams to N-1 browsers (i.e., the application-level topology is a
mesh network). While this is a quite straightforward scenario, it is nonetheless difficult
to manage for a browser and at the same time calls for linearly increasing network
bandwidth availability.

For these reasons, video conferencing systems usually rely upon a star topology where
each peer connects to a dedicated server that is simultaneously responsible for:

• Negotiating parameters with every other peer in the network
• Controlling conferencing resources
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• Aggregating (or mixing) the individual streams
• Distributing the proper mixed stream to each and every peer participating in the

conference

Delivering a single stream clearly reduces both the amount of bandwidth and amount
of CPU (and possibly GPU [Graphics Processing Unit]) resources required by each peer
involved in a conference. The dedicated server can be either one of the peers or a server
specifically optimized for processing and distributing real-time data. In the latter case,
the server is usually identified as a Multipoint Control Unit (MCU).

The WebRTC API does not provide any particular mechanism to assist the conferencing
scenario. The criteria and process to identify the MCU are delegated to the application.
However, this is a big engineering challenge because it envisages the introduction of a
centralized infrastructure in the WebRTC peer-to-peer communication model. The
upside of such a challenge clearly resides in the consideration that being capable of
establishing a peer connection with a proxy server adds to the benefits offered by
WebRTC through the additional services offered by the proxy server itself.

We plan to dedicate at least one chapter to videoconferencing in the next version of this
book.

Identity and Authentication
The DTLS handshake performed between two WebRTC browsers relies on self-signed
certificates. Hence, such certificates cannot be used to also authenticate the peers as
there is no explicit chain of trust.

The W3C WebRTC working group is actually working on a web-based Identity Provider
(IdP) mechanism. The idea is that each browser has a relationship with an IdP sup‐
porting a protocol (for example, OpenId or BrowserID) that can be used to assert its
own identity when interacting with the other peers. The interaction with the IdP is
designed in such a way as to decouple the browser from any particular Identity Provider
(i.e., each browser involved in the communication might have relationships with dif‐
ferent IdPs).

The setIdentityProvider() method sets the Identity Provider to be
used for a given PeerConnection object. Applications do not need to
invoke this call if the browser is already configured for a specific IdP.
In this case, the configured IdP will be used to get an assertion.

The browser sending the Offer acts as the Authenticating Party (AP) and obtains from
the IdP an Identity Assertion binding its identity to its own fingerprint (generated during
the DTLS handshake). This identity assertion is then attached to the Offer.
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The getIdentityProvider() method initiates the process of obtain‐
ing an Identity Assertion. Applications do not need to invoke this call;
the method is merely intended to allow them to start the process of
obtaining Identity Assertions before a call is initiated.

The browser playing the role of the consumer during the Offer/Answer exchange phase
(for instance, the one with the RTCPeerConnection on which setRemoteDescrip
tion() is called) acts as the Relying Party (RP) and verifies the assertion by directly
contacting the IdP of the browser sending the Offer (Figure 6-1). When using the
Chrome browser, this allows the consumer to display a trusted icon indicating that a
call is coming in from a trusted contact.

Figure 6-1. A WebRTC call with IdP-based identity

Peer-to-Peer DTMF
Dual-Tone Multi-Frequency (DTMF) signaling is an encoding technique used in tel‐
ephony systems to encode numeric codes in the form of sound signals in the audio band
between telephone handsets (as well as other communication devices) and the switching
center. As an example, DTMF is used to navigate through an Interactive Voice Res‐
ponder (IVR).
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In order to send DTMF (for example, through the phone keypad) values across an
RTCPeerConnection, the user agent needs to know which specific MediaStreamTrack
will carry the tone.

The createDTMFSender() method creates an RTCDTMFSender object
that references the given MediaStreamTrack. The MediaStream
Track must be an element of a MediaStream that is currently in the
RTCPeerConnection object’s local streams set.

Once an RTCDTMFSender object has been created, it can be used to send DTMF tones
across that MediaStreamTrack (over the PeerConnection) through the insertDTMF()
method.

The insertDTMF() method is used to send DTMF tones. The tones
parameter is treated as a series of characters. The characters 0 through
9, A through D, #, and * generate the associated DTMF tones.

Statistics Model
A real-time communication framework also requires a mechanism to extract statistics
on its performance. Such statistics may be as simple as knowing how many bytes of data
have been delivered, or they may be as sophisiticated as measuring the efficiency of an
echo canceller on the local device.

The W3C WebRTC working group is in the process of defining a very simple statistics
API, whereby a call may return all relevant data for a particular MediaStreamTrack, or
for the PeerConnection as a whole. Statistical data has a uniform structure, consisting
of a string identifying the specific statistics parameter and an associated simple-typed
value.

Providers of this API (such as the different browsers) will use it to expose both standard
and nonstandard statistics. The basic statistics model is that the browser maintains a set
of statistics referenced by a selector. The selector may, for example, be a specific Media
StreamTrack. For a track to be a valid selector, it must be a member of a MediaStream
that is either sent or received across the RTCPeerConnection object on which the stats
request was issued.

The calling web application provides the selector to the getStats() method and the
browser emits a set of statistics that it believes is relevant to such a selector.
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The getStats() method gathers statistics for the given selector and
reports the result asynchronously.

More precisely, the getStats() method takes a valid selector (e.g., a MediaStream
Track) as input, along with a callback to be executed when the stats are available. The
callback is given an RTCStatsReport containing RTCStats objects. An RTCStatsRe
port object represents a map associating strings (identifying the inspected objects—
RTCStats.id) with their corresponding RTCStats containers.

An RTCStatsReport may be composed of several RTCStats objects, each reporting stats
for one underlying object that the implementation thinks is relevant for the selector.
The former collects global information associated with the selector by summing up all
the stats of a certain type. For instance, if a MediaStreamTrack is carried by multiple
SSRCs over the network, the RTCStatsReport may contain one RTCStats object per
SSRC (which can be distinguished by the value of the ssrc stats attribute).

The statistics returned are designed in such a way that repeated queries can be linked
by the RTCStats id dictionary member (see Table 6-1). Thus, a web application can
measure performance over a given time period by requesting measurements both at its
beginning and at its end.

Table 6-1. RTCStats dictionary members
Member Type Description

id DOMString A unique id that is associated with the object that was inspected to produce this RTCStats
object.

timestamp DOMHiResTimeStamp The timestamp, of type DOMHiResTimeStamp [HIGHRES-TIME], associated with this object.
The time is relative to the UNIX epoch (Jan 1, 1970, UTC).

type RTCStatsType The type of this object.

Currently, the only defined types are inbound-rtp and outbound-rtp, both of which
are instances of the RTCRTPStreamStats subclass that additionally provides remoteId
and ssrc properties:

• The outbound-rtp object type is represented by the subclass RTCOutboundRTP
StreamStats, providing packetsSent and bytesSent properties.

• The inbound-rtp object type is represented by the subclass RTCInboundRTPStream
Stats, providing analogous packetsReceived and bytesReceived properties.
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APPENDIX A

WebRTC 1.0 APIs

This Appendix provides a summary of the W3C WebRTC APIs.

RTCPeerConnection API
An RTCPeerConnection allows two users to communicate directly, browser to browser.

Configuration
Table A-1. RTCConfiguration dictionary members

Name Type Default Description

iceServers sequence<RTCIceServer> An array containing URIs of servers available to be used by ICE,
such as STUN and TURN servers.

iceTransports RTCIceTransports “all” Indicates which candidates the ICE engine is allowed to use.

requestIdentity RTCIdentityOption “ifconfigured” See the requestIdentity member of the RTCOfferAnswerOptions
dictionary.

Table A-2. RTCIceServer dictionary members
Name Type Description

credential DOMString If this RTCIceServer object represents a TURN server, then this attribute specifies
the credentials to use with that TURN server.

urls (DOMString or
sequence<DOMString>)

STUN or TURN URI(s) as defined in [STUN-URI] and [TURN-URI] or other URI types.

username DOMString If this RTCIceServer object represents a TURN server, then this attribute specifies
the username to use with that TURN server.

139



Table A-3. RTCIceTransports enumeration values
Value Description

none The ICE engine must not send or receive any packets at this point.

relay The ICE engine must only use media relay candidates such as candidates passing through a TURN server. This can be
used to reduce leakage of IP addresses in certain use cases.

all The ICE engine may use any type of candidates when this value is specified.

Constructor
This is the RTCPeerConnection constructor:

• RTCPeerConnection(configuration)

Methods
Here are the RTCPeerConnection methods:

• createOffer (RTCSessionDescriptionCallback successCallback, RTCPeerCon‐
nectionErrorCallback failureCallback, optional RTCOfferOptions options)|

• createAnswer (RTCSessionDescriptionCallback successCallback, RTCPeerCon‐
nectionErrorCallback failureCallback, optional RTCOfferAnswerOptions op‐
tions)

• setLocalDescription (RTCSessionDescription description, VoidFunction success‐
Callback, RTCPeerConnectionErrorCallback failureCallback)

• setRemoteDescription (RTCSessionDescription description, VoidFunction suc‐
cessCallback, RTCPeerConnectionErrorCallback failureCallback)

• updateIce (RTCConfiguration configuration)
• addIceCandidate (RTCIceCandidate candidate, VoidFunction successCallback,

RTCPeerConnectionErrorCallback failureCallback)
• getConfiguration ()
• getLocalStreams ()
• getRemoteStreams ()
• getStreamById (DOMString streamId)
• addStream (MediaStream stream)
• removeStream (MediaStream stream)
• close ()
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Attributes
Table A-4. RTCPeerConnection attributes

Access property Type Name

readonly RTCSessionDescription remoteDescription

readonly RTCSignalingState signalingState

readonly RTCIceGatheringState iceGatheringState

readonly RTCIceConnectionState iceConnectionState

EventHandler onnegotiationneeded

EventHandler onicecandidate

EventHandler onsignalingstatechange

EventHandler onaddstream

EventHandler onremovestream

EventHandler oniceconnectionstatechange

State Definition
Table A-5. RTCSignalingState

Value Description

stable There is no offer/answer exchange in progress. This is also the initial state in which case the local and
remote descriptions are empty.

have-local-offer A local description, of type “offer,” has been successfully applied.

have-remote-offer A remote description, of type “offer,” has been successfully applied.

have-local-pranswer A remote description of type “offer” has been successfully applied and a local description of type
“pranswer” has been successfully applied.

have-remote-pranswer A local description of type “offer” has been successfully applied and a remote description of type
“pranswer” has been successfully applied.

closed The connection is closed.

Table A-6. RTCIceGatheringState
Value Description

new The object was just created, and no networking has occurred yet.

gathering The ICE engine is in the process of gathering candidates for this RTCPeerConnection.

complete The ICE engine has completed gathering. Events such as adding a new interface or a new TURN server will cause the
state to go back to gathering.
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Table A-7. RTCIceConnectionState
Value Description

new The ICE Agent is gathering addresses and/or waiting for remote candidates to be supplied.

checking The ICE Agent has received remote candidates on at least one component, and is checking candidate pairs but has
not yet found a connection. In addition to checking, it may also still be gathering.

connected The ICE Agent has found a usable connection for all components but is still checking other candidate pairs to see
if there is a better connection. It may also still be gathering.

completed The ICE Agent has finished gathering and checking and found a connection for all components.

failed The ICE Agent is finished checking all candidate pairs and failed to find a connection for at least one component.
Connections may have been found for some components.

disconnected Liveness checks have failed for one or more components. This is more aggressive than failed, and may trigger
intermittently (and resolve itself without action) on a flaky network.

closed The ICE Agent has shut down and is no longer responding to STUN requests.

Peer-to-Peer Data API
The Peer-to-Peer Data API lets a web application send and receive generic application
data peer-to-peer. The API for sending and receiving data models the behavior of
WebSockets.

• Method:
RTCDataChannel

createDataChannel ([TreatNullAs=EmptyString] DOMString label, optional
RTCDataChannelInit dataChannelDict)

• Attribute:
EventHandler

ondatachannel

Interface RTCDataChannel Interface Methods
Table A-8. Methods

Return type Name

void close()

void send(DOMString data)

void send(Blob data)

void send(ArrayBuffer data)

void send(ArrayBufferView data)
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RTCDataChannel Interface Attributes
Table A-9. Attributes

Access property Type Name

readonly DOMString label

readonly boolean ordered

readonly unsigned? maxRetransmitTime

readonly unsigned? maxRetransmits

readonly DOMString protocol

readonly attribute negotiated

readonly unsigned short id

readonly RTCDataChannelState readyState

readonly unsigned long bufferedAmount

EventHandler onopen

EventHandler onerror

EventHandler onclose

EventHandler onmessage

DOMString binaryType

Table A-10. RTCDataChannelInit dictionary
Name Type Description

id unsigned short Overrides the default selection of ID for this channel.

maxRetransmitTime unsigned short Limits the time during which the channel will retransmit data if not successfully delivered.

maxRetransmits unsigned short Limits the number of times a channel will retransmit data if not successfully delivered.

negotiated boolean Defaults to false. The default value of false tells the user agent to announce the
channel in-band and instruct the other peer to dispatch a corresponding RTCData
Channel object. If set to true, it is up to the application to negotiate the channel
and create an RTCDataChannel object with the same ID as the other peer.

ordered boolean Defaults to true. If set to false, data is allowed to be delivered out of order. The
default value of true guarantees that data will be delivered in order.

protocol DOMString Defaults to "". Subprotocol name used for this channel.
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Table A-11. RTCDataChannelState enumeration values
Value Description

connecting The user agent is attempting to establish the underlying data transport. This is the initial state of an RTCData
Channel object created with createDataChannel().

open The underlying data transport is established and communication is possible. This is the initial state of an RTCDa
taChannel object dispatched as a part of an RTCDataChannelEvent.

closing The procedure to close down the underlying data transport has started.

closed The underlying data transport has been closed or could not be established.
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