

Getting Started with WebRTC

Explore WebRTC for real-time peer-to-peer
communication

Rob Manson

BIRMINGHAM - MUMBAI

Getting Started with WebRTC

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1180913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-630-6

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Rob Manson

Reviewers
Todd Hunter

Alexandra Young

Acquisition Editor
Akram Hussain

Commissioning Editor
Shaon Basu

Technical Editors
Pratik More

Anusri Ramchandran

Project Coordinator
Akash Poojary

Proofreader
Clyde Jenkins

Indexers
Hemangini Bari

Mariammal Chettiyar

Graphics
Ronak Dhruv

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

Rob Manson is the CEO and co-founder of buildAR.com, the world's leading
Augmented Reality Content Management System. Rob is the Chairman of the
W3C Augmented Web Community Group, and an Invited Expert with the ISO,
W3C, and the Khronos Group. He is one of the co-founders of ARStandards.org
and is an active evangelist within the global AR and standards communities. He
is regularly invited to speak on the topics of the Augmented Web, Augmented
Reality, WebRTC, and multi-device platforms.

I'd like to thank Alex, my wife and business partner—yes that's as
crazy as it sounds! She's a great inspiration and always happy to put
up with my creative ideas for using new technologies. She makes
both my ideas and me as a person better in every way. I'd also like to
thank Maggie and Todd for providing feedback and working with
me on all our Multi-Device, WebRTC, and Augmented Web projects.
I'm constantly amazed by just how much our team can achieve and
you guys are the backbone that make this happen. I'm proud to say I
work with you both.

About the Reviewers

Todd Hunter is a software developer with over 10 years experience of
developing applications in a variety of industries. He is crazy enough to find
his niche building interesting things with Perl, but with an eye for building
things with the latest technologies. He has spent time in a wide range of
companies, from the big multinationals to the smallest startups in industries
ranging from large software companies, finance, to small high tech startups.
He has a Bachelor's degree in Technology (Hons) and a Bachelor's degree in
Applied Economics. He has a serious caffeine addiction.

Alexandra Young has been an innovator in User Experience across emerging
technologies since the mid-90s. She led a team of designers and developers for one
of Australia's largest telecommunications companies, responsible for defining the
way in which people used products across Interactive TV, online, and mobile. For
the last 6 years, Alex has worked on defining multi-device experiences for MOB
(the research and development technology company she co-founded) on MOB's
products, and complex platform developments for Enterprise, Government, and
Cultural organizations. She is also an advocate for the Augmented Web, of which
WebRTC is a critical component. Alex also speaks regularly at conferences on
Augmented Reality, Mobile and Web Technologies, and User Experience.

Alexandra Young
CXO (Chief Experience Officer)
MOB-labs

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: An Introduction to Web-based
Real-Time Communication	 7

Introducing WebRTC	 7
Uses for WebRTC	 8
Try WebRTC yourself right now!	 9
Browser compatibility	 9

Chrome and Firefox on the PC	 9
Chrome and Firefox on Android	 10
Opera	 11
Microsoft	 12
Apple	 12
Staying up-to-date	 13

Summary	 13
Chapter 2: A More Technical Introduction to
Web-based Real-Time Communication	 15

Setting up communication	 15
The general flow	 15

Connect users	 16
Start signals	 16
Find candidates	 17
Negotiate media sessions	 17
Start RTCPeerConnection streams	 18

Using WebSockets	 18
Other signaling options	 18

MediaStream API	 19
RTCPeerConnection API	 20

The caller's flow	 20
Register the onicecandidate handler	 21

Table of Contents

[ii]

Register the onaddstream handler	 21
Register the message handler	 21
Use getUserMedia to access the local camera	 21
The JSEP offer/answer process	 21

The callee's flow	 21
Register the onicecandidate handler	 22
Register the onaddstream handler	 22
Register the message handler	 22
Use getUserMedia to access the local camera	 22
The JSEP offer/answer process	 22

Where does RTCPeerConnection sit?	 23
RTCDataChannel API	 23
Summary	 24

Chapter 3: Creating a Real-time Video Call	 25
Setting up a simple WebRTC video call	 25
Using a web server to connect two users	 27
Setting up a signaling server	 35
Creating an offer in the caller's browser	 40
Creating an answer in the callee's browser	 42
Previewing the local video streams	 42
Establishing peer-to-peer streams	 43
Stream processing options	 44
Extending this example into a Chatroulette app	 45
Summary	 46

Chapter 4: Creating an Audio Only Call	 47
Setting up a simple WebRTC audio only call	 47
The HTML user interface for audio only calls	 48
Adding an audio only flow to the signaling server	 50
Audio stream processing options	 51
Summary	 51

Chapter 5: Adding Text-based Chat	 53
Adding text-based chat to our video chat app	 53
The HTML user interface for text-based chat	 54
Adding JavaScript functions to enable chatting	 56
Handling text-based chat signals on the server	 57
Other text message processing options	 57
Summary	 58

Chapter 6: Adding File Sharing	 59
Adding file sharing to our video chat app	 59
The HTML user interface for file sharing	 60
Adding JavaScript for enabling file sharing	 62

Table of Contents

[iii]

Adding files using the <input> element	 63
Adding support for drag-and-drop	 65
Adding JavaScript for transferring files via WebSockets	 66
Handling the file-sharing signals on the server	 68
Sending a thumbnail preview before the entire file	 69
Providing progress updates	 71
Establishing an RTCDataChannel connection	 72
Transfering files via an RTCDataChannel connection	 72
Other file-sharing options	 73
Summary	 73

Chapter 7: Example Application 1 – Education and E-learning	 75
Applying WebRTC for education and e-learning	 75
Overall application architecture	 76

Educators	 76
Students	 77
WebRTC capable browser	 77
Existing or new web application	 77
Signaling server	 78
TURN server	 78
Archive server	 78

Potential issues that may be faced	 79
Privacy	 79
Copyright and intellectual property	 80
Restrictive networks	 80
Restrictive SOEs	 81
Outdated student browsers	 81
Interoperability	 82

Benefits that can be delivered	 82
The opportunity for educators	 83
Summary	 84

Chapter 8: Example Application 2 – Team Communication	 85
Applying WebRTC for team communication	 85
Overall application architecture	 86

Managers	 87
Team members	 87
WebRTC capable browser	 87
New and existing web applications	 88
Signaling server	 88
TURN server	 88
Messaging server	 89

Table of Contents

[iv]

Potential issues that may be faced	 89
Privacy	 90
Data security	 90
Restrictive networks	 91
Restrictive SOEs	 92
Interoperability	 92
Timezones	 92

Benefits that can be delivered	 93
The opportunity for managers	 94
Summary	 94

Index	 95

Preface
Getting Started with WebRTC provides all the practical information you need to quickly
understand what WebRTC is, how it works, and how you can add it to your own web
applications. It includes clear working examples designed to help you get started with
building WebRTC-enabled applications right away.

WebRTC delivers Web-based Real-Time Communication, and it is set to revolutionize
our view of what the "Web" really is. The ability to stream audio and video from
browser to browser alone is a significant innovation that will have far reaching
implications for the telephony and video conferencing industries. But this is just the
start. Opening raw access to the camera and microphone for JavaScript developers is
already creating a whole new dynamic web that allows applications to interact with
users through voice, gesture, and all kinds of new options.

On top of that, WebRTC also introduces real-time data channels that will allow
interaction with dynamic data feeds from sensors and other devices. This really is a
great time to be a web developer! However, WebRTC can also be quite daunting to
get started with and many of its concepts can be new or a little confusing for even the
most experienced web developers.

It's also important to understand that WebRTC is not really a single technology,
but more a collection of standards and protocols, and it is still undergoing active
evolution. The examples covered in this book are based on the latest version of the
pre-1.0 version of the WebRTC standards at the time of writing. However, there are
some areas of these standards that are under active debates and may change over the
next year. The first is the way that the Session Description Protocol is integrated into
the WebRTC call management process. The second is the general use of the overall
offer/answer model that underlies the call setup process. And finally, there is also
a strong push for the WebRTC standards to integrate the new Promise (previously
known as Futures) design pattern. This all shows that this is a cutting edge, active,
and exciting technology area, and that now is a great time to get involved as it grows
and evolves.

Preface

[2]

We hope you appreciate this practical guide and that it makes it easy for you to get
started with adding WebRTC to your applications right away.

What this book covers
Chapter 1, An Introduction to Web-based Real-Time Communication, introduces you to the
concepts behind the new Web-based Real-Time Communication (WebRTC) standards.

Chapter 2, A More Technical Introduction to Web-based Real-Time Communication, takes
you to the technical concepts behind the new Web-based Real-Time Communication
(WebRTC) standards.

Chapter 3, Creating a Real-time Video Call, shows you how to use the MediaStream and
RTCPeerConnection APIs to create a working peer-to-peer video chat application
between two people.

Chapter 4, Creating an Audio Only Call, teaches you how to turn the video chat
application we developed in the previous chapter into an audio only call application.

Chapter 5, Adding Text-based Chat, explains how to extend the video chat application
we developed in Chapter 2, A More Technical Introduction to Web-based Real-Time
Communication, to add support for text-based chat between the two users.

Chapter 6, Adding File Sharing, deals with how to extend the video chat application
we developed in Chapter 2, A More Technical Introduction to Web-based Real-Time
Communication and Chapter 4, Creating an Audio Only Call, to add support for file
sharing between the two users.

Chapter 7, Example Application 1 — Education and E-learning, maps out what is
involved in introducing WebRTC into e-learning applications.

Chapter 8, Example Application 2 — Team Communication, shows what is involved in
introducing WebRTC into team your communication applications.

What you need for this book
All you need is:

•	 A text editor for creating HTML and JavaScript files
•	 A computer or server on which you can install Node.js (see instructions in

Chapter 2, A More Technical Introduction to Web-based Real-Time Communication)
•	 One or more WebRTC capable web browsers (see instructions in Chapter 1,

An Introduction to Web-based Real-Time Communication)

Preface

[3]

Who this book is for
Getting Started with WebRTC is written for web developers with moderate JavaScript
experience who are interested in adding sensor driven real-time, peer-to-peer
communication to their web applications.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning:

Code words in text are shown as follows:

"We can include other contexts through the use of the include directive."

A block of code is set as follows:

var page = undefined;
fs.readFile("basic_video_call.html", function(error, data) {
 if (error) {
 log_error(error);
 } else {
 page = data;
 }
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

function setup_audio() {
 get_user_media(
 {
 "audio": true, // request access to local microphone
 "video": false // don't request access to local camera
 },
 function (local_stream) { // success callback
 ...
 },
 log_error // error callback
);
}

Preface

[4]

Any command-line input or output is written as follows:

node webrtc_signal_server.js

New terms and important words are shown in bold.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really find useful.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic in which you have expertise, and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

An Introduction to Web-based
Real-Time Communication

This chapter introduces you to the concepts behind the new Web-based Real-Time
Communication (WebRTC) standards. After reading this chapter, you will have a
clear understanding of:

•	 What is WebRTC
•	 How you can use it
•	 Which web browsers support it

Introducing WebRTC
When the World Wide Web (WWW) was first created in the early 1990's, it was built
upon a page-centric model that used HREF-based hyperlinks. In this early model
of the web, browsers navigated from one page to another in order to present new
content and to update their HTML-based user interfaces.

Around the year 2000, a new approach to web browsing had started to develop, and
by the middle of that decade, it had become standardized as the XMLHttpRequest
(XHR) API. This new XHR API enabled web developers to create web applications
that didn't need to navigate to a new page to update their content or user interface. It
allowed them to utilize server-based web services that provided access to structured
data and snippets of pages or other content. This led to a whole new approach to the
web, which is now commonly referred to as Web 2.0. The introduction of this new
XHR API enabled services such as Gmail, Facebook, Twitter, and more to create a
much more dynamic and social web for us.

An Introduction to Web-based Real-Time Communication

[8]

Now the web is undergoing yet another transformation that enables individual web
browsers to stream data directly to each other without the need for sending it via
intermediary servers. This new form of peer-to-peer communication is built upon
a new set of APIs that is being standardized by the Web Real-Time Communications
Working Group available at http://www.w3.org/2011/04/webrtc/ of the World
Wide Web Consortium (W3C), and a set of protocols standardized by Real-Time
Communication in WEB-browsers Working Group available at http://tools.ietf.
org/wg/rtcweb/ of the Internet Engineering Task Force (IETF).

Just as the introduction of the XHR API led to the Web 2.0 revolution, the
introduction of the new WebRTC standards is creating a new revolution too.

It's time to say hello to the real-time web!

Uses for WebRTC
The real-time web allows you to set up dynamic connections to other web browsers
and web-enabled devices quickly and easily. This opens the door to a whole new
range of peer-to-peer communication, including text-based chat, file sharing, screen
sharing, gaming, sensor data feeds, audio calls, video chat, and more. You can now
see that the implications of WebRTC are very broad. Direct and secure peer-to-
peer communication between browsers will have a big impact on the modern web,
reshaping the way we use the physical networks that make up the Internet.

Direct peer-to-peer connections often provide lower latency, making gaming,
video streaming, sensor data feeds, and so on, appear faster and more interactive
or real-time, hence the use of this term.

Secure peer-to-peer connections allow you to exchange information privately
without it being logged or managed by intermediary servers. This reduces the
need for some large service providers while creating opportunities for people to
create new types of services and applications. It introduces improved privacy for
some individuals while it may also create new complexities for regulators and law
enforcement organizations.

And the efficient peer-to-peer exchange of binary data streams removes the need to
serialize, re-encode, or convert this data at each step in the process. This leads to a
much more efficient use of network and application resources, as well as creating a
less error prone and more robust data exchange pipeline.

This is just a brief overview of how you can use WebRTC, and by the end of this
book, you will have all the information you need to start turning your own new
ideas into practical applications.

Chapter 1

[9]

Try WebRTC yourself right now!
The goal of this book is to get you started with WebRTC, so let's do that right now.
You can easily find out if your browser supports the camera access functionality
by visiting one of the existing demo sites such as http://www.simpl.info/
getusermedia, and if it does, you should be prompted to provide permission to
share your camera. Once you provide this permission, you should see a web page
with a live video stream from your PC or mobile devices' video camera, and be
experiencing the interesting sensation of looking at a video of yourself staring right
back at you. That's how simple it is to start using WebRTC.

Now, perhaps you'd like to try using it to communicate with another person. You
can do this by visiting another demo site such as http://apprtc.appspot.com,
which will create a unique URL for your video chat. Just send this URL to another
person with a browser that also supports WebRTC, and once they open that page,
you should see two video elements displayed on the page: one from your local
video camera and one from the other person's video camera. There's a lot of complex
negotiation that's gone on in the background, but assuming your browser supports
WebRTC and your network doesn't actively prevent it, then you should now have a
clear idea of just how easy it is to use.

But what web browsers support WebRTC? Let's find out.

Browser compatibility
The WebRTC standards landscape is home to one of the fastest evolving communities
on the web. One of the biggest challenges this creates is that of compatibility and
interoperability. Here is an overview of what this is up to today and how to stay
up-to-date as this continues to evolve.

Chrome and Firefox on the PC
At the time this chapter was written, WebRTC was supported as default by Chrome
and Firefox on mainstream PC Operating Systems such as Mac OS X, Windows, and
Linux. And most importantly, these two key implementations have been shown to
communicate well with each other through a range of interoperability tests.

Have a look at the Hello Chrome, it's Firefox calling! blog post at
https://hacks.mozilla.org/2013/02/hello-chrome-
its-firefox-calling/.

An Introduction to Web-based Real-Time Communication

[10]

Chrome and Firefox on Android
WebRTC is also available for Chrome and Firefox on the Android platform; however,
currently you must manually configure certain settings to enable this functionality.

Here are the key steps you need to enable this for Chrome. These are from the
Chrome for Android release notes posted on the discuss-webrtc forum available at
https://groups.google.com/forum/#!topic/discuss-webrtc/uFOMhd-AG0A:

To enable WebRTC on Chrome for Android:

1.	 Type in chrome://flags/ in the omnibox to access the flags.
2.	 Scroll about a third down and enable the Enable WebRTC flag.
3.	 You will be asked to relaunch the browser at the bottom of the page

in order for the flag to take effect.

Enabling WebRTC using Chrome flags on Android

Chapter 1

[11]

Here are the key steps you need to enable WebRTC for Firefox. These are from
a post on the Mozilla Hacks blog about the new Firefox for Android release
available at https://hacks.mozilla.org/2013/04/webrtc-update-our-first-
implementation-will-be-in-release-soon-welcome-to-the-party-but-
please-watch-your-head/:

You can enable it by setting both the media.navigator.enabled pref and the media.
peerconnection.enabled pref to "true" (browse to about:config and search for media.
navigator.enabled and media.peerconnection.enabled in the list of prefs).

Enabling WebRTC using Firefox settings on Android

Opera
Opera has been an active supporter of the WebRTC movement and has implemented
early versions of this standard in previous releases of their browsers. But at the time
this chapter was written, they were working to port their collection of browsers to
the WebKit platform based on the open Chromium project. So, until this migration
activity is complete, their support for WebRTC is currently listed as unavailable.

An Introduction to Web-based Real-Time Communication

[12]

However, since the Chromium project is closely related to Chrome, which is also
built upon the WebKit platform, it is expected that Opera's support for WebRTC
will develop quickly after this migration is complete.

Microsoft
Microsoft has proposed its own alternative to WebRTC named Customizable,
Ubiquitous Real-Time Communication over the Web (CU-RTC-Web). Have a
look at http://html5labs.interoperabilitybridges.com/cu-rtc-web/cu-
rtc-web.htm.

As yet, it has not announced any timeline as to when Internet Explorer may support
WebRTC, but it is currently possible to use WebRTC within Internet Explorer
using the Chrome Frame solution available at https://developers.google.com/
chrome/chrome-frame/.

Microsoft has also recently released prototypes that show interoperability in the
form of a voice chat application connecting Chrome on a Mac and IE10 on Windows
available at http://blogs.msdn.com/b/interoperability/archive/2013/01/17/
ms-open-tech-publishes-html5-labs-prototype-of-a-customizable-
ubiquitous-real-time-communication-over-the-web-api-proposal.aspx.
This shows that one way or another, Microsoft understands the significance of the
WebRTC movement, and it is actively engaging in the standards discussions.

Apple
Apple has not yet made any announcement about when they plan to support
WebRTC in Safari on either OS X or iOS. So far, the only application that has made
WebRTC available on iOS is an early proof of concept browser created by Ericsson
Labs named Bowser, and is available at http://labs.ericsson.com/apps/bowser.

Bowser is based upon a very early experimental version of the
WebRTC standards, and it does not interoperate with any of the
other mainstream web browsers.

However, as Safari is also based upon the WebKit platform just like Chrome and
Opera, there should be no major technical barriers to prevent Apple from enabling
WebRTC on both their mobile and PC browsers.

Chapter 1

[13]

Staying up-to-date
It is also important to note that WebRTC is not a single API, but really a collection
of APIs and protocols defined by a variety of Working Groups, and that the
support for each of these are developing at different rates on different browsers
and operating systems.

A great way to see where the latest level of support has reached is through services
such as http://caniuse.com, which tracks broad adoption of modern APIs across
multiple browsers and operating systems.

And, you should also check out the open project at http://www.webrtc.org,
which is supported by Google, Mozilla, and Opera. This project provides a set
of C++ libraries that are designed to help browser and application developers
quickly and easily implement standards compliant with WebRTC functionality.
It is also a useful site to find the latest information on browser support and some
great WebRTC demos.

Summary
You should now have a clear overview of what the term WebRTC means and
for what it can be used. You should be able to identify which browsers support
WebRTC and have all the resources you need to find the latest up-to-date
information on how this is evolving. You should also have been able to try the
different aspects of WebRTC for yourself quickly and easily using your own
browser if you so choose.

Next, we will take a more technical look at how the different WebRTC API
components all fit together.

Then, we will start by fleshing out the simple peer-to-peer video call scenario
into a fully working application.

Later, we will explore how this can be simplified down to just an audio only
call or extended with text-based chat and file sharing.

And then, we will explore two real-world application scenarios based upon
e-learning and team communication.

A More Technical
Introduction to Web-based
Real-Time Communication

This chapter introduces you to the technical concepts behind the new Web-based
Real-Time Communication (WebRTC) standards. After reading this chapter, you
will have a clear understanding of the following topics:

•	 How to set up peer-to-peer communication
•	 The signaling options available
•	 How the key APIs relate to each other

Setting up communication
Although the basis of WebRTC communication is peer-to-peer, the initial step of
setting up this communication requires some sort of coordination. This is most
commonly provided by a web server and/or a signaling server. This enables two
or more WebRTC capable devices or peers to find each other, exchange contact
details, negotiate a session that defines how they will communicate, and then
finally establish the direct peer-to-peer streams of media that flows between them.

The general flow
There are a wide range of scenarios, ranging from single web page demos running on
a single device to complex distributed multi-party conferencing with a combination of
media relays and archiving services. To get started, we will focus on the most common
flow, which covers two web browsers using WebRTC to set up a simple video call
between them.

A More Technical Introduction to Web-based Real-time Communication

[16]

Following is the summary of this flow:

•	 Connect users
•	 Start signals
•	 Find candidates
•	 Negotiate media sessions
•	 Start RTCPeerConnection streams

Connect users
The very first step in this process is for the two users to connect in some way. The
simplest option is that both the users visit the same website. This page can then
identify each browser and connect both of them to a shared signaling server, using
something like the WebSocket API. This type of web page, often, assigns a unique
token that can be used to link the communication between these two browsers.
You can think of this token as a room or conversation ID. In the http://apprtc.
appspot.com demo described previously, the first user visits http://apprtc.
appspot.com, and is then provided with a unique URL that includes a new unique
token. This first user then sends this unique URL to the second user, and once they
both have this page open at the same time the first step is complete.

Start signals
Now that both users have a shared token, they can now exchange signaling messages
to negotiate the setup of their WebRTC connection. In this context, "signaling
messages" are simply any form of communication that helps these two browsers
establish and control their WebRTC communication. The WebRTC standards don't
define exactly how this has to be completed. This is a benefit, because it leaves
this part of the process open for innovation and evolution. It is also a challenge as
this uncertainty often confuses developers who are new to RTC communication in
general. The apprtc demo described previously uses a combination of XHR and the
Google AppEngine Channel API (https://developers.google.com/appengine/
docs/python/channel/overview). This could, just as easily, be any other approach
such as XHR polling, Server-Sent Events (http://www.html5rocks.com/en/
tutorials/eventsource/basics/), WebSockets (http://www.html5rocks.
com/en/tutorials/websockets/basics/), or any combination of these, you feel
comfortable with.

Chapter 2

[17]

Find candidates
The next step is for the two browsers to exchange information about their networks,
and how they can be contacted. This process is commonly described as "finding
candidates", and at the end each browser should be mapped to a directly accessible
network interface and port. Each browser is likely to be sitting behind a router that
may be using Network Address Translation (NAT) to connect the local network to
the internet. Their routers may also impose firewall restrictions that block certain
ports and incoming connections. Finding a way to connect through these types
of routers is commonly known as NAT Traversal (http://en.wikipedia.org/
wiki/NAT_traversal), and is critical for establishing a WebRTC communication. A
common way to achieve this is to use a Session Traversal Utilities for NAT (STUN)
server (http://en.wikipedia.org/wiki/Session_Traversal_Utilities_for_
NAT), which simply helps to identify how you can be contacted from the public
internet and then returns this information in a useful form. There are a range of
people that provide public STUN servers. The apprtc demo previously described
uses one provided by Google.

If the STUN server cannot find a way to connect to your browser from the public
internet, you are left with no other option than to fall back to using a solution that
relays your media, such as a Traversal Using Relay NAT (TURN) server (http://
en.wikipedia.org/wiki/Traversal_Using_Relay_NAT). This effectively takes you
back to a non peer-to-peer architecture, but in some cases, where you are inside a
particularly strict private network, this may be your only option.

Within WebRTC, this whole process is usually bound into a single Interactive
Connectivity Establishment (ICE) framework (http://en.wikipedia.org/wiki/
Interactive_Connectivity_Establishment) that handles connecting to a STUN
server and then falling back to a TURN server where required.

Negotiate media sessions
Now that both the browsers know how to talk to each other, they must also agree
on the type and format of media (for example, audio and video) they will exchange
including codec, resolution, bitrate, and so on. This is usually negotiated using
an offer/answer based model, built upon the Session Description Protocol (SDP)
(http://en.wikipedia.org/wiki/Session_Description_Protocol). This has
been defined as the JavaScript Session Establishment Protocol (JSEP); for more
information visit http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-00)
by the IETF.

A More Technical Introduction to Web-based Real-time Communication

[18]

Start RTCPeerConnection streams
Once this has all been completed, the browsers can finally start streaming media to
each other, either directly through their peer-to-peer connections or via any media
relay gateway they have fallen back to using.

At this stage, the browsers can continue to use the same signaling server solution for
sharing communication to control this WebRTC communication. They can also use a
specific type of WebRTC data channel to do this directly with each other.

Using WebSockets
The WebSocket API makes it easy for web developers to utilize bidirectional
communication within their web applications. You simply create a new connection
using the var connection = new WebSocket(url); constructor, and then create
your own functions to handle when messages and errors are received. And sending a
message is as simple as using the connection.send(message); method.

The key benefit here is that the messaging is truly bidirectional, fast, and lightweight.
This means the WebSocket API server can send messages directly to your browser
whenever it wants, and you receive them as soon as they happen. There are no
delays or constant network traffic as it is in the XHR polling or long-polling model,
which makes this ideal for the sort of offer/answer signaling dance that's required to
set up WebRTC communication.

The WebSocket API server can then use the unique room or conversation token,
previously described, to work out which of the WebSocket API clients messages
should be relayed to. In this manner, a single WebSocket API server can support a
very large number of clients. And since the network connection setup happens very
rarely, and the messages themselves tend to be small, the server resources required
are very modest.

There are WebSocket API libraries available in almost all major programming
languages, and since Node.js is based on JavaScript, it has become a popular choice
for this type of implementation. Libraries such as socket.io (http://socket.io/)
provide a great example of just how easy this approach can really be.

Other signaling options
Any approach that allows browsers to send and receive messages via a server can be
used for WebRTC signaling.

Chapter 2

[19]

The simplest model is to use the XHR API to send messages and to poll the server
periodically to collect any new messages. This can be easily implemented by any web
developer without any additional tools. However, it has a number of drawbacks. It
has a built-in delay based on the frequency of each polling cycle. It is also a waste of
bandwidth, as the polling cycle is repeated even when no messages are ready to be
sent or received. But if you're looking for a good old-fashioned solution, then this is
the one.

A slightly more refined approach based on polling is called long-polling. In this
model, if the server doesn't have any new messages yet, the network connection is
kept alive until it does, using the HTTP 1.1 keep-alive mechanisms. When the server
has some new information, it just sends it down the wire to complete the request. In
this case, the network overhead of the polling is reduced. But it is still an outdated
and inefficient approach compared to more modern solutions such as WebSockets.

Server-Sent Events are another option. You establish a connection to the server using
the var source = new EventSource(url); constructor, and then add listeners to
that source object to handle messages sent by the server. This allows servers to send
you messages directly, and you receive them as soon as they happen. But you are
still left using a separate channel, such as XHR, to send your messages to the server,
which means you are forced to manage and synchronize two separate channels.
This combination does provide a useful solution that has been used in a number
of WebRTC demonstration apps, but it does not have the same elegance as a truly
bidirectional channel, such as WebSockets.

There are all kinds of other creative ideas that could be used to facilitate the required
signaling as well. But what we have covered are the most common options you will
find being used.

MediaStream API
The MediaStream API is designed to allow you to access streams of media from
local input devices, such as cameras and microphones. It was initially focused
upon the getUserMedia API or gUM for short, but has now been formalized
as the broader media capture and streams API, or MediaStream API for short.
However, the getUserMedia() method is still the primary way to initiate access
to local input devices.

Each MediaStream object can contain a number of different MediaStreamTrack
objects that each represents different input media, such as video or audio from
different input sources.

A More Technical Introduction to Web-based Real-time Communication

[20]

Each MediaStreamTrack can then contain multiple channels (for example, the left
and right audio channels). These channels are the smallest units that are defined by
the MediaStream API.

MediaStream objects can then be output in two key ways. First, they can be used
to render output into a MediaElement such as a <video> or <audio> element
(although the latter may require pre-processing). Secondly, they can be used to send
to an RTCPeerConnection, which can then send this media stream to a remote peer.

Each MediaStreamTrack can be represented in a number of states described
by the MediaSourceStates object returned by the states() method. Each
MediaStreamTrack can also provide a range of capabilities, which can be accessed
through the capabilities() method.

At the top level, a MediaStream object can fire a range of events such as addtrack,
removetrack, or ended. And below that a MediaStreamTrack can fire a range of
events such as started, mute, unmute, overconstrainted, and ended.

RTCPeerConnection API
The RTCPeerConnection API is the heart of the peer-to-peer connection between
each of the WebRTC enabled browsers or peers. To create an RTCPeerConnection
object, you use the var peerconnection = RTCPeerConnection(configuration);
constructor. The configuration variable contains at least one key named
iceServers, which is an array of URL objects that contain information about STUN,
and possibly TURN servers, used during the finding candidates phase.

The peerconnection object is then used in slightly different ways on each client,
depending upon whether you are the caller or the callee.

The caller's flow
Here's a summary of the caller's flow after the peerconnection object is created:

•	 Register the onicecandidate handler
•	 Register the onaddstream handler
•	 Register the message handler
•	 Use getUserMedia to access the local camera
•	 The JSEP offer/answer process

Chapter 2

[21]

Register the onicecandidate handler
First, you register an onicecandidate handler that sends any ICE candidates
to the other peer, as they are received using one of the signaling channels
described previously.

Register the onaddstream handler
Then, you register an onaddstream handler that displays the video stream once
it is received from the remote peer.

Register the message handler
Your signaling channel should also have a handler registered that responds
to messages received from the other peer. If the message contains an
RTCIceCandidate object, it should add those to the peerconnection object
using the addIceCandidate() method. And if the message contains an
RTCSessionDescription object, it should add those to the peerconnection
object using the setRemoteDescription() method.

Use getUserMedia to access the local camera
Then, you can utilize getUserMedia() to set up your local media stream and
display that on your local page, and also add it to the peerconnection object
using the addStream() method.

The JSEP offer/answer process
Now, you are ready to start the negotiation using the createOffer() method
and registering a callback handler that receives an RTCSessionDescription
object. This callback handler should then add this RTCSessionDescription to
your peerconnection object using setLocalDescription(). And then finally,
it should also send this RTCSessionDescription to the remote peer through
your signaling channel.

The callee's flow
The following is a summary of the callee's flow, which is very similar in a lot of
ways to the caller's flow, except that it responds to the offer with an answer:

•	 Register the onicecandidate handler
•	 Register the onaddstream handler

A More Technical Introduction to Web-based Real-time Communication

[22]

•	 Register the message handler
•	 Use getUserMedia to access the local camera
•	 The JSEP offer/answer process

Register the onicecandidate handler
Just like the caller, you start by registering an onicecandidate handler that sends
any ICE candidates to the other peer as they are received, using one of the signaling
channels described previously.

Register the onaddstream handler
Then, like the caller, you register an onaddstream handler that displays the video
stream once it is received from the remote peer.

Register the message handler
Like the caller, your signaling channel should also have a handler registered
that responds to messages received from the other peer. If the message contains
an RTCIceCandidate object, it should add those to the peerconnection
object using the addIceCandidate() method. And if the message contains an
RTCSessionDescription object, it should add those to the peerconnection
object using the setRemoteDescription() method.

Use getUserMedia to access the local camera
Then, like the caller, you can utilize getUserMedia() to set up your local media
stream and display that on your local page, and also add it to the peerconnection
object using the addStream() method.

The JSEP offer/answer process
Here you differ from the caller and you play your part in the negotiation by
passing remoteDescription to the createAnswer() method and registering a
callback handler that receives an RTCSessionDescription object. This callback
handler should then add this RTCSessionDescription to your peerconnection
object using setLocalDescription(). And then finally, it should also send this
RTCSessionDescription to the remote peer through your signaling channel. It is
also important to note that this callee flow is all initiated after the offer is received
from the caller.

Chapter 2

[23]

Where does RTCPeerConnection sit?
The following diagram shows the overall WebRTC architecture from the
www.WebRTC.org site. It shows you the level of complexity that is hidden below
the RTCPeerConnection API.

WebRTC C C++ API (PeerConnection)

Session management / Abstract signaling (Session)

Voice Engine Video Engine Transport

SRTP

MultiplexingVideo jitter buffer

VP8 Codec

Image enhancementsEcho Canceler /
Noise Reduction

NetEQ for voice

Audio
Capture/Render Video Capture Network I/O

P2P
STUN +TURN +ICE

Your browser

The web

WebRTC

iSAC / iLBC Codec

Web API (Edited by W3C WG)

Your w
eb

app #
1

Your w
eb

app #
2

Your w
eb

app #
3

...

Overrideable by browser makersAPI for browser makersAPI for web developers

Overall architecture diagram from www.WebRTC.org

RTCDataChannel API
As well as sending media streams between peers using WebRTC, it is also possible to
use the DataChannel API to send arbitrary streams of data. Although many people
commonly refer to this as the RTCDataChannel API, it is more accurately defined as
just the WebRTC DataChannel API and is created by using the var datachannel =
peerconnection.createDataChannel(label); constructor. It is a very flexible and
powerful solution that has been specifically designed to be similar to the WebSocket
API through the send() method and the onmessage event.

At the time of writing this chapter, this API is still in a state of flux with the varying
browser implementations still struggling with standardization.

A More Technical Introduction to Web-based Real-time Communication

[24]

Summary
You should now have a clear overview of the various APIs and protocols that
combine to make WebRTC work.

Throughout the rest of the book, we will explore the MediaStream,
RTCPeerConnection, and RTCDataChannel APIs in more detail as we work to
apply these concepts to real world examples.

First, we will start by fleshing out the simple peer-to-peer video call scenario into
a fully working application.

Then, we will explore how this can be simplified down to just an audio only call
or extended with text-based chat and file sharing.

And then, we will explore two real-world application scenarios based upon
e-learning and team communication.

Creating a Real-time
Video Call

This chapter shows you how to use the MediaStream and RTCPeerConnection APIs
to create a working peer-to-peer video chat application between two people. After
reading this chapter, you will have a clear understanding of:

•	 Using a web server to connect two users
•	 Setting up a signaling server for a peer-to-peer call
•	 How the caller's browser creates an offer
•	 How the callee's browser responds with an answer
•	 Previewing local video streams
•	 Establishing and presenting remote video streams
•	 The types of stream processing available
•	 Extending this into a Chatroulette application

Setting up a simple WebRTC video call
The most common WebRTC example application involves setting up a video call
between two separate users. Within a few seconds, you can easily see and talk to
anyone, anywhere in the world who has one of the one billion or more WebRTC-
enabled browsers. Let's take a detailed look at how this can be achieved and create
the code we need as we go.

Throughout this book, some simple coding conventions will be used to aid
communication and readability.

Creating a Real-time Video Call

[26]

JavaScript APIs standardized by the W3C and other standards definition organizations
will use the conventional camel case format (for example, standardFunctionCall()).

Functions and variables that have been defined for this book will use all lowercase
strings and replace word breaks or white space with an underscore (for example,
custom_function_call()).

The web and WebSocket server functionality in this example application will be
implemented using JavaScript and Node.js. It is beyond the scope of this book to
provide information on how to install and configure Node.js, but all the information
you need can be found at http://nodejs.org/.

However, this book does provide you with well-described working Node.js
example code that provides all the functionality you need to run the
demonstration applications.

A basic peer-to-peer video call using WebRTC

Chapter 3

[27]

Using a web server to connect two users
The very first step is simply to connect two separate users using the Web. We
start by creating a standard HTML5 web page that includes a DOCTYPE definition,
a document head, and a document body:

<!DOCTYPE html>
<html>
<head>
…
</head>
<body>
…
</body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Then, the first element inside the document head is the webrtc_polyfill.js
script included inline between a pair of <script> tags. The webrtc_polyfill.js
code is exactly what it says it is and is designed to make it easy to write JavaScript
that works across all common browser implementations of the WebRTC and
MediaStream APIs. Here is an overview of how it works.

First, we set up six global placeholders for the primary features it exposes:

var webrtc_capable = true;
var rtc_peer_connection = null;
var rtc_session_description = null;
var get_user_media = null;
var connect_stream_to_src = null;
var stun_server = "stun.l.google.com:19302";

These global placeholders are then populated with their final values, based on the
type of browser capabilities that are detected.

rtc_peer_connection is a pointer to either the standard RTCPeerConnection,
mozRTCPeerConnection if you are using an early Firefox WebRTC implementation,
or webkitRTCPeerConnection if you are using an early WebRTC implementation in
a WebKit-based browser like Chrome.

Creating a Real-time Video Call

[28]

rtc_session_description is also a pointer to the browser-specific implementation
of the RTCSessionDescription constructor. For this, the only real exception is
within the early Firefox WebRTC implementation.

get_user_media is very similar. It is either a pointer to the standard navigator.
getUserMedia, navigator.mozGetUserMedia if you are using an early MediaStream
API implementation in Firefox, or navigator.webkitUserMedia if you are using an
early MediaStream API implementation in a WebKit-based browser such as Chrome.

connect_stream_to_src is a function that accepts a reference to a MediaStream
object and a reference to an HTML5 <video> media element. It then connects the
stream to the <video> element so that it can be displayed within the local browser.

Finally, the stun_server variable holds a pointer to Google's public STUN server.
Currently, Firefox requires this to be an IP address, but Chrome supports DNS-based
hostnames and ports.

The heart of the browser detection is then handled in a set of simple if/else blocks.

First, it checks if the standard navigator.getUserMedia is supported, else it
checks if navigator.mozGetUserMedia is supported (for example, early Firefox
MediaStream API), or else if navigator.webkitGetUserMedia is supported (for
example, an early WebKit browser MediaStream API).

The final else block then assumes that this is a browser that doesn't support
getUserMedia at all. This code also assumes that if getUserMedia is supported in
some way, then a matching RTCPeerConnection API is also implicitly supported.

The connect_stream_to_src function then is adapted slightly, based on which
type of browser has been detected.

The default standard version directly assigns the media_stream to the video
element's .srcObject property:

 connect_stream_to_src = function(media_stream, media_element) {
 media_element.srcObject = media_stream;
 media_element.play();
 };

Within the early Firefox WebRTC implementations, the <video> media element
uses the mozSrcObject property, which can have the media stream object directly
assigned to it:

 connect_stream_to_src = function(media_stream, media_element) {
 media_element.mozSrcObject = media_stream;
 media_element.play();
 };

Chapter 3

[29]

Within the early WebKit-based WebRTC implementations, the webkitURL.
createObjectURL function is passed the media stream object, and the response
from this is then directly assigned to the <video> element's .src property:

 connect_stream_to_src = function(media_stream, media_element) {
 media_element.src = webkitURL.createObjectURL(media_stream);
 };

Once webrtc_polyfill.js has set up everything, we need to create browser
independent WebRTC code; we can then move onto the body of this video call
application. The code that defines the basic_video_call.js browser side logic
for this is included inline within another pair of <script></script> tags.

First, we set up the general variables that we will use throughout the rest of the code.

The call_token variable is a unique ID that links two users together. It is used to
ensure that any signals passing through the signaling server are only exchanged
between these two specific users.

var call_token; // unique token for this call

The signaling_server is a variable that represents the WebSocket API connection
to the signaling server to which both the caller and callee will be connected:

var signaling_server; // signaling server for this call

The peer_connection variable represents the actual RTCPeerConnection that will
be established between these two users:

var peer_connection; // peerconnection object

Next, we set up a basic start() function that is called by the pages'
body.onload event:

function start() {

This function essentially detects if you are the caller or the callee, and then sets up
the relevant functionality to match. It also sets up a number of common functions
that are used by both the caller and the callee.

Creating a Real-time Video Call

[30]

The first step here is to populate the peer_connection variable with a real
RTCPeerConnection object using the rtc_peer_connection constructor setup
by webrtc_polyfill.js. We pass a configuration object to this function that
defines the STUN server we would like to use. In this example, we have used
a public STUN server provided by Google; however, this is for demonstration
purposes only. If you intend to build a commercial application, you must find a
commercial STUN provider.

 // create the WebRTC peer connection object
 peer_connection = new rtc_peer_connection({
 "iceServers": [
 { "url": "stun:"+stun_server }, // stun server info
]
 });

Next, we set up our own function for the peer_connection.onicecandidate event
handler and if ice_event contains a candidate then we serialize this into a JSON blob
and send that to the other caller's browser through the signaling_server variable:

 // generic handler that sends any ice candidates to the other peer
 peer_connection.onicecandidate = function (ice_event) {
 …
 };

Then, we set up our own function for the peer_connection.onaddstream handler.
This simply receives any new incoming video streams and connects them to a local
<video> element within the local browser, so you can see and hear the person on the
other end of the call.

 // display remote video streams when they arrive
 peer_connection.onaddstream = function (event) {
 …
 };

Later, we set up our connection to the signaling server using the WebSocket API.
This is generic, because this same type of connection is used by both the caller and
the callee. It is essential that both are connected to the same signaling server in this
basic example.

 // setup generic connection to the signaling server using the
WebSocket API
 signaling_server = new WebSocket("ws://localhost:1234");

Chapter 3

[31]

Now, all of the generic functionality has been set up, and we can move onto
customizing the rest based on whether you are a caller or a callee. This is simply
done by detecting whether the browser has loaded a page with a call_token
hash fragment or not.

If you are the caller, then you are the first person to visit the page, and you
will have no call_token at all. In this case, we will create one for you and set
location.hash so that you can see this in your browser's location bar (for example,
http://localhost:1234#1370439693969-433). It is important to note that
localhost should be replaced with the hostname or IP address that you actually
intend to use, and that this must also be accessible to the other person that intends
to join the call.

You can then send this URL to the other person (via e-mail, SMS, carrier pigeon, or
whatever method works best for you). Once they load this URL, we will then detect
that they already have a call_token hash fragment defined and will then treat them
as the callee.

 if (document.location.hash === ""
 || document.location.hash === undefined) { // you are the Caller
 …
 } else { // you have a hash fragment so you must be the Callee
 ...
 }
}

Following the start() function, we define the detailed implementation of a
number of other generic handler functions that are used by either or both the
caller and the callee.

First, we implement the function that handles any new descriptions that are set up in
the JSEP offer/answer process. This will be described in more detail in the following
code snippet:

// handler to process new descriptions
function new_description_created(description) {
 …
}

Then, we implement the function that handles all the signals we receive from the
signaling server from the perspective of the caller. This handles four key scenarios:

1.	 If signal.type is callee_arrived, then we start the JSEP offer/answer
process. This is described in more detail in the code snippet that follows.

2.	 If signal.type is new_ice_candidate, then this candidate is added to
peer_connection.

Creating a Real-time Video Call

[32]

3.	 If signal.type is new_description, then we call peer_connection.
setRemoteDescription().

4.	 Or else you can extend this with your own custom signaling.

Here is the function that handles these four scenarios:

// handle signals as a caller
function caller_signal_handler(event) {
 var signal = JSON.parse(event.data);
 if (signal.type === "callee_arrived") {
 ...
 } else if (signal.type === "new_ice_candidate") {
 ...
 } else if (signal.type === "new_description") {
 ...
 } else {
 // extend with your own signal types here
 }
}

Then, we implement the function that handles all the signals we receive from
the signaling server from the perspective of the callee. This is similar to the caller
function that we just saw, except it only handles 3 key scenarios:

1.	 If signal.type is new_ice_candidate, then this candidate is added to
the peer_connection.

2.	 If signal.type is new_description, then we call peer_connection.
setRemoteDescription(), and if the description contains an offer,
then we create an answer.

3.	 Or else you can extend this with your own custom signaling.

Here is the function that handles these three scenarios:

// handle signals as a callee
function callee_signal_handler(event) {
 var signal = JSON.parse(event.data);
 if (signal.type === "new_ice_candidate") {
 ...
 } else if (signal.type === "new_description") {
 ...
 } else {
 // extend with your own signal types here
 }
}

Chapter 3

[33]

Now, we implement the function that requests access to the local camera's video
stream using the getUserMedia call. If this stream is set up successfully, then it is
displayed on the local browser page in a <video> element and then added to the
peer_connection object so that it can be sent to the remote peer's browser. If this
local stream is not set up successfully, then the error is logged so that the user can
be notified.

// setup stream from the local camera
function setup_video() {
 get_user_media(
 {
 "audio": true, // request access to local microphone
 "video": true // request access to local camera
 },
 function (local_stream) { // success callback
 ...
 },
 log_error // error callback
);
}

Then, we define a generic error handler function that logs the error and notifies the
user, so they know what has happened:

// generic error handler
function log_error(error) {
 …
}

Once all of the JavaScript code has been defined, then we move on to defining some
simple CSS based styles. You can obviously customize this as much as you like, but
in this example, we have provided the basic styles you need to understand on how
you can quickly and easily create a user interface that handles all of the different
states required for this video call application.

First, we create a style for the loading_state, open_call_state, local_video, and
remote_video ID's, and set them to not be displayed by default.

Then, we set the style for loading_state to make sure it is displayed by default.
This content is shown to both the caller and the callee when they first load the page.

<style>
html, body {
 padding: 0px;
 margin: 0px;
 font-family: "Arial","Helvetica",sans-serif;

Creating a Real-time Video Call

[34]

}
#loading_state {
 position: absolute;
 top: 45%;
 left: 0px;
 width: 100%;
 font-size: 20px;
 text-align: center;
}
#open_call_state {
 display: none;
}
#local_video {
 position: absolute;
 top: 10px;
 left: 10px;
 width: 160px;
 height: 120px;
 background: #333333;
}
#remote_video {
 position: absolute;
 top: 0px;
 left: 0px;
 width: 1024px;
 height: 768px;
 background: #999999;
}
</style>

Now, we are ready to set up the HTML body content of the page that binds the CSS
and JavaScript together into a working user interface. This example application
contains only the minimum content needed to demonstrate a working video call
application. From this, you should be able to add your own custom content to adapt
this to your needs quickly and easily.

<body onload="start()">
 <div id="loading_state">
 loading...
 </div>
 <div id="open_call_state">
 <video id="remote_video"></video>
 <video id="local_video"></video>
 </div>
</body>

Chapter 3

[35]

You now have a web page-based user interface and application that can connect two
browsers using WebRTC to set up a peer-to-peer video call. From here, you may
like to extend this code to add extra error handling, make the WebSocket connection
automatically reconnect if it gets disconnected, and also customize the HTML and CSS.

Now that we have set up the browser side of the application, let's move on to see
how the signaling server side of this application works.

Setting up a signaling server
In order to provide the web and WebSocket server functionality, we will create
a basic Node.js application. You could implement this functionality using any
server and programming language of your choice. And you could separate the web
component and the WebSocket component into different code bases too. However,
for this example, we have integrated them into a single simple JavaScript application
to keep it similar to the previous browser side code examples.

This server application really is very simple, is less than 100 lines long, and contains
five basic steps:

1.	 First, we load in some useful libraries that make it easier to implement this
application. The most important one is the websocket library. If you don't
already have that installed in your Node.js implementation, then you should
be able to easily install that using npm, the node package manager. From the
command line, this can be as easy as typing npm install websocket.

2.	 We then define a set of general variables that will be used throughout
the application.

3.	 Next, we set up and define the basic web server behavior for this application.
4.	 We then set up and define the more detailed WebSocket server functionality

that provides the heart of this signaling server application.
5.	 Finally, we set up some basic utility functions that are used through

the application:

// useful libs
// general variables
// web server functions
// web socket functions
// utility functions

Creating a Real-time Video Call

[36]

Now, let's walk through each of these five parts of this script in more detail. The first
is the useful libs section:

// useful libs

Within the useful libs section, we start by loading in the "http" package
and assigning this to the http variable. This package provides basic web server
functionality.

var http = require("http");

Then, we load in the "fs" package and assign this to the fs variable. This package
provides access to the local filesystem on the server so we can read and write files
as needed.

var fs = require("fs");

Then, we load in the websocket package and assign this to the websocket_server
variable. This package provides all the functionality we need to setup and configure
a WebSocket server.

var websocket = require("websocket").server;

Now, we can move onto the general variables section:

// general variables

First, we define a variable that describes on which port our server application will
listen. Here, we have picked an arbitrary value for this port. In a production system,
this would commonly be 80, which is the standard HTTP port. However, on Unix-
like systems, if the application is not running with superuser or root privileges, then
it can only use ports above 1000.

var port = 1234;

Next, we define a simple array that will be used to store a list of the browsers that
have open WebSocket connections to this server:

var webrtc_clients = [];

Then, we define a simple object that will be used to store an indexed list of the different
discussions or calls that are currently being managed by this signaling server. The keys
that are used to index into this object are call_tokens, set up for each caller.

var webrtc_discussions = {};

Now, we move onto the web server section of this script:

// web server functions

Chapter 3

[37]

First, we use the http variable defined just now to call the createServer() function
to instantiate a running web server and we store a reference to this in the http_
server variable. This web server provides one single function. It simply returns our
HTML page to any browser that sends it a request. In this simple example, we don't
care what the request is, but you could easily customize this to handle a wider range
of options here.

var http_server = http.createServer(function(request, response) {
 response.write(page);
 response.end();
});

Then, we bind this http_server variable to our chosen port using the .listen()
function. We also define an anonymous function here that is executed when this
server starts.

http_server.listen(port, function() {
 log_comment("server listening (port "+port+")");
});

Then, we set up our HTML page content that is returned as the response. First, we
define a global page variable that is used in the anonymous function passed to the
http.createServer() call. Then, we use the fs.readFile() function to get the
contents of our basic_video_call.html:

var page = undefined;
fs.readFile("basic_video_call.html", function(error, data) {
 if (error) {
 log_error(error);
 } else {
 page = data;
 }
});

Next, we move on to the WebSocket section of this script:

// web socket functions

First we use the websocket variable as a constructor and assign this new object to the
websocket_server variable. We also pass a configuration object to this constructor
that tells it to use the http_server variable as its httpServer:

var websocket_server = new websocket({
 httpServer: http_server
});

Creating a Real-time Video Call

[38]

Then, we set up the main function that handles all new requests to this
WebSocket server:

websocket_server.on("request", function(request) {
 log_comment("new request ("+request.origin+")");

By default, we accept all new requests and assign each to a connection variable.
In a production system, you may want to extend this functionality to add some
form of authentication and/or authorization for new connections.

 var connection = request.accept(null, request.origin);
 log_comment("new connection ("+connection.remoteAddress+")");

Then, we push this new connection onto the webrtc_clients array so that it is
added to the list of browsers connected to our server. And, we also use its position
in this list to identify this connection easily and store this in the .id property of the
connection object itself:

 webrtc_clients.push(connection);
 connection.id = webrtc_clients.length-1;

Now we are ready to set up the heart of the signaling functionality by defining a
function that handles all new messages sent from the connected WebSocket clients:

 connection.on("message", function(message) {

First, we filter out and only handle utf8-based messages. You could also extend
this to handle binary messages if needed.

 if (message.type === "utf8") {
 log_comment("got message "+message.utf8Data);

Then, we set up a variable that contains the actual signal sent in the message. We try
to parse this using the JSON.parse() method and wrap this in a try/catch block
to make sure that non-JSON or invalid JSON messages don't crash this script. In this
simple example, we don't do anything at all with errors here, but in your application,
you will likely want to extend this to handle all types of error states more elegantly.

 var signal = undefined;
 try { signal = JSON.parse(message.utf8Data); } catch(e) { };

Then if the JSON signal was parsed successfully, we use its .type property to work
out what we should do with it. In this simple example application, we have three
key scenarios:

1.	 If .type is join and the signal also includes a .token property, then we add
this connection to the webrt_discussions object using the token as the key.

Chapter 3

[39]

2.	 Otherwise, if .type is anything else and .token is defined, then we simply
send this message to any other connections that have joined that discussion.
You'll also note here that we check to make sure that we don't replay the
signal back to the connection that sent this signal to us.

3.	 In any other case, we simply treat this type of signal as invalid.

Here is the code that handles these three scenarios:

 if (signal) {
 if (signal.type === "join" && signal.token !== undefined) {
 try {
 if (webrtc_discussions[signal.token] === undefined) {
 webrtc_discussions[signal.token] = {};
 }
 } catch(e) { };
 try {
 webrtc_discussions[signal.token][connection.id] =
 true;
 } catch(e) { };
 } else if (signal.token !== undefined) {
 try {
 Object.keys(webrtc_discussions[signal.token]).
 forEach(function(id) {
 if (id != connection.id) {
 webrtc_clients[id].send(message.utf8Data,
 logg_error);
 }
 });
 } catch(e) { };
 } else {
 log_comment("invalid signal: "+message.utf8Data);
 }
 } else {
 log_comment("invalid signal: "+message.utf8Data);
 }
 }
 });

Then, we set up a function to handle when connections are closed. Here, we simply
walk through the list of all discussions and check to see if this connection has joined
them and remove them if necessary. You could make this process more scalable by
adding a list of discussions joined to each connection object. This would save you
having to walk the full list of all discussions.

 connection.on("close", function(connection) {
 log_comment("connection
 closed ("+connection.remoteAddress+")");

Creating a Real-time Video Call

[40]

 Object.keys(webrtc_discussions).forEach(function(token) {
 Object.keys(webrtc_discussions[token]).forEach(function(id) {
 if (id === connection.id) {
 delete webrtc_discussions[token][id];
 }
 });
 });
 });
});

And finally, we can move onto the utility functions section of this script:

// utility functions

First, we have a general log_error function which simply prints errors to the
console. You may want to extend this to handle errors more elegantly and where
relevant, send notifications back to any connections that have been impacted.

function log_error(error) {
 if (error !== "Connection closed" && error !== undefined) {
 log_comment("ERROR: "+error);
 }
}

Finally, we have a simple log_comment function that takes a comment string and
prepends it with a timestamp and then writes this to the console:

function log_comment(comment) {
 console.log((new Date())+" "+comment);
}

Now you have a fully working webrtc_signaling_server.js script that supports
both web and WebSocket connections. A browser can connect to it to load the basic_
video_call.html web page which will then automatically set up a WebSocket
connection too.

Creating an offer in the caller's browser
As the caller, you are the person initiating the call. You visit the web page first and
get call_token that you then share with the person to which you want to connect.
But then your browser has to wait until the callee connects.

Chapter 3

[41]

Once they do connect, their browser sends a signal to the signaling server letting it
know that they have arrived, and this signal is then sent to your browser. Once your
browser receives this callee_arrived signal, you can then initiate the JSEP offer/
answer process by calling peer_connection.createOffer():

// handle signals as a caller
function caller_signal_handler(event) {
 var signal = JSON.parse(event.data);
 if (signal.type === "callee_arrived") {
 peer_connection.createOffer(
 new_description_created,
 log_error
);
 } else …
}

If the offer is created successfully, then the resulting description is passed to
the new_description_created() function. This calls peer_connection.
setLocalDescription() to set this as the local description and then serializes this
description, and sends it to the signaling server as a new_description signal that is
then forwarded on to the remote browser:

// handler to process new descriptions
function new_description_created(description) {
 peer_connection.setLocalDescription(
 description,
 function () {
 signaling_server.send(
 JSON.stringify({
 call_token:call_token,
 type:"new_description",
 sdp:description
 })
);
 },
 log_error
);
}

Creating a Real-time Video Call

[42]

Creating an answer in the callee's
browser
Once you have connected to the web page as a callee, and the caller's browser has
initiated the JSEP offer/answer process, you will receive a new_description signal.
We then call peer_connect.setRemoteDescription() to set this as the remote
description, and if this description is really an offer, then we call peer_connection.
createAnswer() to send back a response. Just like in the code snippet for the caller,
we use the new_description_created() function to set this answer as our local
description, and then serialize it into a new_description signal that is then sent
back to the caller:

// handle signals as a callee
function callee_signal_handler(event) {
 ...
 } else if (signal.type === "new_description") {
 peer_connection.setRemoteDescription(
 new rtc_session_description(signal.sdp),
 function () {
 if (peer_connection.remoteDescription.type == "offer") {
 peer_connection.createAnswer(new_description_created, log_
error);
 }
 },
 log_error
);
 } else ...
}

Previewing the local video streams
To preview the local video streams, we implement the setup_video() function. This
requests access to the local camera's video stream using the getUserMedia call.

If this stream is set up successfully, then it is displayed on the local browser page in
the <video> media element with the local_video ID using the connect_stream_
to_src() function defined in webrtc_polyfill.js.

If this local stream is not set up successfully, then the error is logged so the user can
be notified.

// setup stream from the local camera
function setup_video() {
 get_user_media(

Chapter 3

[43]

 {
 "audio": true, // request access to local microphone
 "video": true // request access to local camera
 },
 function (local_stream) { // success callback
 // preview the local camera & microphone stream
 connect_stream_to_src(
 local_stream,
 document.getElemntById("local_video")
);
 ...
 },
 log_error // error callback
);
}

It is important that this function is called and the streams are added to the peer
connection object before any other code attempts to create an offer or an answer.

Establishing peer-to-peer streams
When the setup_video() function is called, and the stream is set up
successfully, then it is added to peer_connection using the peer_connection.
addStream(local_stream) call. This is then ready to be sent to the remote peer
automatically once the full RTCPeerConnection is set up successfully.

// setup stream from the local camera
function setup_video() {
 get_user_media(
 {
 "audio": true, // request access to local microphone
 "video": true // request access to local camera
 },
 function (local_stream) { // success callback
 ...
 // add local stream to peer_connection ready to be sent to the
remote peer
 peer_connection.addStream(local_stream);
 },
 log_error // error callback
);
}

Creating a Real-time Video Call

[44]

Once the stream from the remote peer is received, then the peer_connection.
onaddstream handler is called. This uses the connect_stream_to_src() method
defined in the webrtc_polyfill.js code to display the stream in the <video>
media element with the remote_video ID. If your user interface shows the user a
placeholder user interface until the remote stream is received, then this is where
you will also want to add code to update this state.

// display remote video streams when they arrive
 peer_connection.onaddstream = function (event) {
 // hide placeholder and show remote video
 connect_stream_to_src(
 event.stream,
 document.getElementById("remote_video")
);
 };

Stream processing options
Once you have set up any video stream from either a local or remote source to
display within a <video> element on your page, you can then access this data to
process it in any number of ways. You can create filters to change colors, create
chromakey effects, or do facial/object recognition, just to name a few.

Here's a brief overview of how you access the data within these streams to set up
this type of processing:

1.	 Set up a <canvas> element in the DOM.
°° declaratively then via getElementById or similar
°° createElement("canvas"), then appendChild()

2.	 Get a 2D drawing context for <canvas>.
canvas_context = canvas.getContext('2d');

3.	 Draw the <video> frames onto <canvas>.
canvas_context.drawImage(video, top, left, width, height);

4.	 Get the RGBA Uint8ClampedArray of the pixels.
context.getImageData(top, left, width, height).data;

5.	 Loop through the typed array to process pixel rows and columns.
for (...) { for (...) { … } … }

Chapter 3

[45]

6.	 Render results.
°° using HTML/JS/CSS
°° using another <canvas> and drawImage()
°° using WebGL
°° a combination of all

Here are some links to some useful examples to help you get started.
Chromakey/greenscreen:
https://developer.mozilla.org/en-US/docs/HTML/
Manipulating_video_using_canvas

Exploding video:
http://shinydemos.com/explode/

Face detection:
https://github.com/neave/face-detection

Head tracking:
https://github.com/auduno/headtrackr

Image processing pipeline:
https://github.com/buildar/getting_started_with_
webrtc/blob/master/image_processing_pipeline.html

Extending this example into a
Chatroulette app
Now that you have a working application that connects two users in a peer-to-
peer video call, you can easily extend this in a number of ways. One option is
to change the setup and signaling flow so that callees are connected to random
callers just like the video Chatroulette applications that have sprung up all across
the Internet. Have a look at this Google search, https://www.google.com/
search?q=video+chat+roulette.

To implement this type of functionality, you only need to make two simple changes.

First, each browser that connects to the web page can randomly be allocated as either
a caller or a callee, removing the need for the caller to send a link with call_token to
the callee. In this new application, users just visit the web page and are automatically
entered into either the caller or callee scenario.

Creating a Real-time Video Call

[46]

Second, update the signaling server so that when a callee joins, the signaling server
loops through the webrtc_discussions object looking for callers who are not
currently connected to anyone else. The signaling server would then return call_
token for that discussion and the signaling flow works like normal after that.

This shows you just how easy it is to extend this basic example application to create
all sorts of new applications using WebRTC.

Summary
You should now have a clear understanding of how to create a fully working
application that connects two users in a WebRTC-based peer-to-peer video call.
You should be able to utilize the MediaStream and RTCPeerConnection APIs
in real world scenarios and understand how these different components work
together in a living application.

You should be able to set up a web server that handles the initial process of
connecting two users and set up a signaling server that manages the setup of the
video call. You should understand in detail how the caller's browser initiates the
JSEP offer and how the callee's browser responds with an answer. You should have
a clear knowledge of how the local and remote video streams are connected to and
displayed in the web page, how these streams can be processed to create filters and
other special effects, and how this example application can easily be extended.

In the next chapters, we will explore how this application can be simplified down
to just an audio only call or extended with text-based chat and file sharing.

And then we will explore two real-world application scenarios based upon
e-learning and team communication.

Creating an Audio Only Call
This chapter shows you how to turn on the video chat application, which we had
developed in the previous chapter into an audio only call application. After reading
this chapter you will have a clear understanding of:

•	 Setting up an HTML user interface for audio only calls
•	 Handling audio only signaling
•	 The types of audio stream processing available

Setting up a simple WebRTC audio
only call
In the previous chapter, we had developed an application that implemented the
most common WebRTC example of setting up a video call between two browsers.
But sometimes, you may not have enough bandwidth to support video streaming,
the browsers may not have cameras connected, or the users may just prefer to simply
participate in a voice call instead. Here, we will show how easy it is to adapt the
existing application we have developed to turn it into an audio only application.

Creating an Audio Only Call

[48]

The HTML user interface for audio only
calls
First, let's look at how the HTML-based web page will need to be modified.
As before, we start with a standard HTML5 web page that includes a DOCTYPE
definition, a document head, and a document body.

<!DOCTYPE html>
<html>
<head>
…
</head>
<body>
…
</body>
</html>

The Caller interface ready for another browser to join the call

And again, the first element inside the document head is a pair of <script> tags that
include the webrtc_polyfill.js code inline.

Chapter 4

[49]

This is followed by the code that defines the basic_audio_call.js browser side
logic, included inline within a pair of <script></script> tags. This code will only
require minor modifications to the one we developed in the previous chapter, and
we'll discuss all this in more detail.

Then, the simple CSS-based styles are defined within a pair of <style></style>
tags, as before.

And finally, the HTML body content of the page is defined to bind the CSS and
JavaScript together into a working user interface.

<body onload="start()">
 <div id="loading_state">
 loading...
 </div>
 <div id="open_call_state">
 <audio id="remote_audio"></audio>
 </div>
</body>

Here you will notice that only two small changes have been made to the HTML
body content:

•	 The first <video> element has been changed to an <audio> media element,
and its ID has been updated to remote_audio.

•	 The second <video> element that was used to preview the local camera
stream has been removed. In an audio only call, it doesn't make sense to play
back the stream from the local microphone, as this will cause feedback.

You will probably want to extend this user interface to provide other options such
as the ability to hang up the call, and so on. In fact, without the <video> elements,
the user interface is effectively empty. But these two HTML modifications are the
simplest changes required for this example.

Then, we need to update the function that requests access to the local microphone's
audio stream using the getUserMedia call and rename this to setup_audio(). In the
video call application, if this stream is set up successfully, it is displayed on the local
browser's page in a <video> element. However, since we want to avoid the screech
of audio feedback from the local microphone, we only need to add this stream to the
peer_connection object, so that it can be sent to the remote peer's browser. And as
usual, if this local stream is not set up successfully, the error is logged so the user can
be notified.

// setup stream from the local microphone
function setup_audio() {
 get_user_media(

Creating an Audio Only Call

[50]

 {
 "audio": true, // request access to local microphone
 "video": false // don't request access to local camera
 },
 function (local_stream) { // success callback
 ...
 },
 log_error // error callback
);
}

Now, we are ready to make the final three updates to the JavaScript:

•	 Change the peer_connection.onaddstream handler to use
document.getElementById("remote_audio") instead of document.
getElementById("remote_video")

•	 Change the caller_signal_handler() function so the callee_arrived
flow ends by calling setup_audio() instead of setup_video()

•	 Change the callee_signal_handler() function so the new_description
flow ends by calling setup_audio() instead of setup_video()

The web browser side of this new audio only call application is now complete.

Adding an audio only flow to the
signaling server
The WebSocket-based signaling server we developed in node.js was designed in
an abstract way, so that it only used call_token to route signals from one user to
another. Other than that, it doesn't have any specific dependencies upon the contents
or type of signaling messages at all. This means that no updates to the signaling
server are required to adapt it to support audio only calls.

The only change required is to update the name of the source HTML file it reads
in using the fs package. Just change this to basic_audio_call.html to match
our new HTML user interface:

fs.readFile("basic_audio_call.html", function(error, data) {

Once you have made this simple change, just restart the signaling server; for
example, by typing node webrtc_signal_server.js on the command line,
and then you are ready to start making your audio only call.

Chapter 4

[51]

Audio stream processing options
As with video streams, once you have set up any audio streams from either a local or
remote source to an <audio> media element, you can then start to explore processing
the binary data using JavaScript. The evolving Web Audio API is designed to bring
rich audio processing to the web and allows you to add filters and effects, visualize
your audio streams, and much more. The latest specification of the Web Audio API
is available at http://www.w3.org/TR/webaudio/, you can find some great example
applications by Chris Wilson at http://webaudiodemos.appspot.com/.

Summary
You should now have a clear understanding of how easy it is to adapt our existing
video call application to support audio only calls. You should be able to update the
HTML user interface to adapt from video to audio. And you should now understand
how the cleanly abstracted design of the signaling server requires no real updates to
support this new application scenario.

You should also have all the information you need to start exploring how these
audio streams can be processed to create filters and other special effects.

In the next chapters, we will explore how this application can be extended with text
based chat and file sharing.

And then, we will explore two real-world application scenarios based on e-learning
and team communication.

Adding Text-based Chat
This chapter shows you how to extend the video chat application we developed in
Chapter 2, A More Technical Introduction to Web-based Real-Time Communication, to add
support for text-based chat between the two users. After reading this chapter, you
will have a clear understanding of:

•	 Extending the existing HTML to support text-based chat
•	 Adding additional JavaScript to enable chatting
•	 Handling text-based chat in the signaling server
•	 Other chat-based message processing ideas and options

Adding text-based chat to our video
chat app
In the previous chapter, we explored how you could simplify your video chat
application for when you want to offer "audio only" calls. Now, let's see how
easy it is to extend our original video chat application so that the two users
can also chat by typing messages and they can share web links and notes,
as they interact through the video interface.

Adding Text-based Chat

[54]

The HTML user interface for text-based
chat
First, let's look at how the HTML-based web page will need to be modified. As usual,
we start with a standard HTML5 web page that includes a DOCTYPE definition, a
document head, and a document body.

<!DOCTYPE html>
<html>
<head>
…
</head>
<body>
…
</body>
</html>

And again, the first element inside the document head is a pair of <script> tags that
includes the webrtc_polyfill.js script.

As before, this is followed by the video_call_with_chat.js code that defines the
browser side logic included inline within a pair of <script></script> tags. This
code only differs slightly from the original basic_video_call.js code, and we'll
walk through this in detail now.

Next, our simple CSS-based styles are defined within a pair of <style></style>
tags as usual with style definitions for chat, messages, and message_input ID's.

Then as usual, the HTML body content of the page is defined to bind the CSS and
JavaScript together into a working user interface.

<body onload="start()">
 <div id="loading_state">
 loading...
 </div>
 <div id="open_call_state">
 <video id="remote_video"></video>
 <video id="local_video"></video>
 <div id="chat">
 <div id="messages"></div>
 <input type="text"
 id="message_input"
 value="Type here then hit enter..."></input>
 </div>
 </div>
</body>

Chapter 5

[55]

Here you will notice that three changes have been made to the HTML body content:

1.	 We have added a general chat div container within which the entire
text-based chat user interface is wrapped.

2.	 Then we have added a messages div into which we will add all new
messages as lines of text as they either arrive from the signaling server,
or are entered by the local user.

3.	 Finally, we have added a message_input text input field so you can type
your messages to send to the person on the other end of your call.

A live video call with the text-based chat panel added on the right

You easily extend this user interface to add different colors to the names that prefix
each message, add timestamps, allow users to set their nickname, and so on. But
these three HTML modifications are the simplest changes required for this example.

Adding Text-based Chat

[56]

Adding JavaScript functions to enable
chatting
Next, we need to add a few simple functions that will handle the chat messages
received from the signaling server and that will enable the local users to send their
own messages.

At the end of the existing start() function, we add two calls that define some basic
functionality for the message_input bar.

The first step is to add an onkeydown event handler that checks each new character
entered into the message_input bar, and if the latest one is a return, then it takes the
full value of the message and sends it to the signaling server as a new_chat_message.

 document.getElementById("message_input").onkeydown =
 send_chat_message;

The second step is to add a simple onfocus event handler that clears the message_
input bar so that you can start typing a new message. By default, we start with a
simple hint that says Type here then hit enter... and we need to clear this as
soon as you bring focus to the message_input bar.

 document.getElementById("message_input").onfocus =
 function() { this.value = ""; }

Next, we add an extra else if () block to both the caller_signal_handler()
and callee_signal_handler() functions:

} else if (signal.type === "new_chat_message") {
 add_chat_message(signal);
} ...

This detects new inbound signals sent from the signaling server where the type is
new_chat_message, and then directs them to the add_chat_message() function.

This then takes these new messages and adds them to the messages div wrapper
within the chat user interface. This function is the perfect place to add extra
functionality, based on which user the message comes from or other types of context.

function add_chat_message(signal) {
 var messages = document.getElementById("messages");
 var user = signal.user || "them";
 messages.innerHTML =
 user+": "+signal.message+"
\n"+messages.innerHTML;
}

Chapter 5

[57]

The video chat application we developed in Chapter 2, A More Technical Introduction to
Web-based Real-Time Communication, now has all the functionality it needs to support
text-based chat.

Handling text-based chat signals on the
server
As in the audio call only example, here again we can see that the abstract design of
the WebSocket-based signaling server we developed requires no updates to support
text-based chat.

The only change required is to update the name of the source HTML file it reads in
using the fs package to video_call_with_chat.html to match our new HTML
user interface:

fs.readFile("video_call_with_chat.html", function(error, data) {

Just make this change, and then restart the signaling server, and you are ready to
start chatting using text alongside your video call.

Other text message processing options
Now that you can easily type text messages to send to the other browser, you can
add all kinds of other functionality. If you look at common instant messaging
systems such as Internet Relay Chat (IRC), Skype, or any of the systems based on
Extensible Messaging and Presence Protocol(XMPP), you'll see that they support
emoticons (for example, smileys such as ;)) that are automatically converted into
image-based icons.

Many of these systems also support special command strings that allow you to
access predefined functionality. Because this chat application is simply HTML, CSS,
and JavaScript-based code you have developed, you can easily add custom functions
to do things, such as play sounds, update the user interface, or anything else you
can imagine. Then, simply define some specific symbolic strings (for example, like
#hashtags in Twitter) that you can easily detect and use to trigger these functions.

This text-based chat solution is based on sending messages through the WebSocket
API via the signaling server. Another option that has a very similar interface is the
RTCDataChannel API. This is not as stable or as widely supported as WebSocket,
or the RTCPeerConnection and MediaStream APIs, but it does have some great
advantages that we'll explore in the next chapter.

Adding Text-based Chat

[58]

Summary
You should now have a clear understanding of how easy it is to adapt our initial
video call application to support text-based chat. You should be able to update the
HTML user interface to add a simple chat panel. And you should now appreciate
even more how the cleanly abstracted design of the signaling server allows us to
easily support new application scenarios.

You should also have all the information you need to start exploring other text
message processing options and ideas.

In the next chapters, we will explore how this application can be extended to also
support file sharing.

And then, we will explore two real-world application scenarios based upon
e-learning and team communication.

Adding File Sharing
This chapter shows you how to extend the video chat application we developed in
the second and fourth chapters to add support for file sharing between the two users.
After reading this chapter, you will have a clear understanding of:

•	 Extending the existing HTML for supporting file sharing
•	 Adding JavaScript for enabling file sharing
•	 Adding files through the standard file selector user interface
•	 Enabling users to drag-and-drop files into the browser window
•	 Adding JavaScript for transferring files over the WebSocket connection
•	 Extending the signaling server for supporting file transfer
•	 Sending thumbnails before sending the whole file
•	 Providing progress updates during the transfer
•	 Using RTCDataChannel connections between two users
•	 Adding JavaScript for transferring files over the RTCDataChannel

connection
•	 Other file sharing related ideas and options

Adding file sharing to our video chat app
In the previous chapter, we explored how we could extend our video chat
application to add text based chat. Now, let's see how we can add a whole new
layer to this video chat application that enables the two users to also share files by
selecting them through a file selector or dragging them into the browser window.

Adding File Sharing

[60]

The HTML user interface for file sharing
First, let's look at how the HTML-based web page needs to be modified. As usual,
we start with a standard HTML5 web page that includes a DOCTYPE definition, a
document head, and a document body:

<!DOCTYPE html>
<html>
<head>
…
</head>
<body>
…
</body>
</html>

And again the first element inside the document head is a pair of <script></
script> tags that includes the webrtc_polyfill.js script.

As before, this is followed by the video_call_with_chat_and_file_sharing.js
code that defines the browser side logic included inline within a pair of <script></
script> tags. This code differs slightly from the original basic_video_call_with_
chat.js code, and we'll walk through this in detail.

Next, our simple CSS-based styles are defined within a pair of <style></style>
tags, as usual with style definitions for file_sharing, file_input, file_add,
file_list, file_img_src, and file_thumbnail_canvas id's added along with
definitions for file, file_img, and file_progress classes.

Then, as usual, the HTML body content of the page is defined to bind the CSS and
JavaScript together into a working user interface, as shown in the following code:

<body onload="start()">
 <div id="loading_state">
 loading...
 </div>
 <div id="open_call_state">
 <video id="remote_video"></video>
 <video id="local_video"></video>
 <div id="chat">
 <div id="messages"></div>
 <input type="text"
 id="message_input"
 value="Type here then hit enter..."></input>

Chapter 6

[61]

 </div>
 <div id="file_sharing">
 <input type="file" id="file_input"></input>
 <div id="file_add">

 </div>
 <div id="file_list">
 </div>

 <canvas id="file_thumbnail_canvas"></canvas>
 </div>
 </div>
</body>

Here you will notice that we have added a file_sharing div that contains five
new elements:

•	 First, we have added a file_input element that allows the browser to access
the file system.

•	 Next, we have added a file_add div that contains a single image that acts as
the Share a new file button.

•	 Then, we have added a file_list div that will contain the list of new files as
they are added to the user interface.

•	 Next, we have a hidden file_img_src image element that is used in the
process of creating the thumbnail preview of the shared files. This process
will be described in detail in a short while.

•	 Finally, we have a hidden file_thumbnail_canvas element that is also used
in the process of creating the thumbnail previews.

These additions will provide an intuitive user interface that lets the user click on a
button to share a file or simply drag the file into the browser window. A preview of
the file will be displayed in a list on the left under the local camera preview. And the
file preview list automatically shows the progress of the file transfer, and once fully
transferred, it allows you to view the full file by simply clicking on the thumbnail.

This demonstration application has focused on the more complex process of
sharing image files. From here, you should be able to extend this to support sharing
documents and other file types easily, replacing the image thumbnails with your
own file icons.

Adding File Sharing

[62]

Adding JavaScript for enabling file
sharing
First, we add a new global variable that is used to hold all the data that defines the
list of files that have been shared.

var file_store = []; // shared file storage

Then, at the end of the start() function, we add an if/else block, which detects if
our browser supports all of the capabilities required to enable file sharing.

 // setup file sharing
 if (!(window.File
 && window.FileReader
 && window.FileList
 && window.Blob)) {
 document.getElementById("file_sharing").style.display =
 "none";
 alert("This browser does not support File Sharing");
 } else {
 document.getElementById("file_add").onclick =
 click_file_input;
 document.getElementById("file_input").addEventListener("change",
 file_input, false);
 document.getElementById("open_call_state").addEventListener("drago
 ver", drag_over, false);
 document.getElementById("open_call_state").
addEventListener("drop", file_input, false);
 }

If it doesn't support the required capabilities, we hide the file sharing user interface
and notify the user.

Otherwise, we bind four handlers to elements within the page to activate the file
sharing functionality:

•	 A file_add onclick handler that enables manual file selection
•	 A file_input change event handler that detects when the file input

element has received one or more new files
•	 A dragover event handler for the whole user interface that detects when

something has been dragged over the user interface
•	 A drop event handler for the whole user interface that detects when

something has been dropped onto the user interface

Chapter 6

[63]

Adding files using the <input> element
The first thing you will notice when you use this version of the application is that
there is now a Share a new file button sitting underneath the local video preview
window at the top left-hand corner of the user interface. As you saw previously,
this button is bound to the click_file_input() function using an onclick event
handler. This is a very simple function that triggers the click event on the file_
input element itself.

// initiate manual file selection
function click_file_input(event) {
 document.getElementById('file_input').click();
}

Doing so allows us to use an image button and hide the default file_input element,
so that we can easily customize the design of the user interface as per our choice and
not just limited by the design constraints of the input element.

This then prompts the browser to present the user with the native file selection user
interface. Once the user has selected the file of his/her choice, then the file_input
change event handler is fired, which calls the file_input() function.

// handle manual file selection or drop event
function file_input(event) {
 ...
 files = event.target.files;
 ...
 if (files.length > 1) {
 alert("Please only select one file at a time");
 } else if (!files[0].type.match('image.*')) {
 alert("This demo only supports sharing image files");
 } else if (files.length == 1) {
 ...
 }
}

Because the change event on the file_input element triggered this call, the event
object should contain a target property, which is a reference to the input itself. This
will then contain a files property that is a collection of the files selected by the user.

For this application, we will only handle the case where one file is selected at a time.
You can easily extend this for multiple files support. You will also notice that we
have limited the selection to image files only. The following code example handles
the creation of a small thumbnail from the image and sending that before slicing up
and sending the entire large file. You can also extend this code to support other file
types that utilize your own file icons, and so on.

Adding File Sharing

[64]

So, now that we have asserted that only one single image file has been selected, we
can move onto the process of handling this file:

 var kb = (files[0].size/1024).toFixed(1);
 var new_message = "Sending file...
"+
 files[0].name+"
("+kb+"KB)";
 signaling_server.send(
 JSON.stringify({
 token:call_token,
 type: "new_chat_message",
 message: new_message
 })
);
 add_chat_message({ user: "you", message: new_message });

First, we build a message that describes this new file. We create a variable named kb
that determines the size of this file in kilobytes. Then, we combine this along with
the file's name into the message. We then send this new_message to the other user
to let them know that we are about to start sending this file. And, we also add this
message to our local chat messages list so we know what is happening. All of this is
done using the existing text chat structure we added to this application in Chapter 4,
Creating an Audio Only Call.

Next, we inject the HTML code that displays this file into our list of shared files.
We do this using the get_file_div() function that returns the HTML template
for this code:

 document.getElementById("file_list").innerHTML =
 get_file_div(file_store.length)+
 document.getElementById("file_list").innerHTML;

Next, we read the selected file from the filesystem and convert it into a base64 data
URL, as shown in the following code:

 var reader = new FileReader();
 reader.onload = (function(file, id) {
 return function(event) {
 send_file(file.name, id, event.target.result);
 }
 })(files[0], file_store.length);
 reader.readAsDataURL(files[0]);

Chapter 6

[65]

You will notice that we have first set up an onload handler and then called the
readAsDataURL() function. This is important, because loading the file can take some
time and this ensures that the send_file() function isn't called until the file is fully
loaded. The send_file() function then creates a thumbnail and sends that first,
followed by the full file itself. We will walk through this process in more detail later.

In this application, we use the base64 data URL file format for interacting with
canvas elements, within file transfers, and for rendering into a window to display
the entire file. However, in many cases you may find it is more efficient to use binary
data in typed arrays, and this is an area that I would' strongly encourage you to
explore further. The html5rocks website provides an excellent introduction to typed
arrays at http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/.

Adding support for drag-and-drop
While it's easy for a user to click on the Share a new file button, it is also convenient
to allow them to simply drag a file into the browser window. Previously we added
two event handlers that deal with the dragover and drop events and we bound this
to open_call_state which effectively fills the entire browser viewport. This means
that you can now drag a file onto any part of the browser window to initiate the file
sharing transfer.

First, we create the drag_over() function that simply prevents the browser from
leaving our web page and loading the file that was dragged into it, which is the
default browser behavior.

// prevent window from reloading when file dragged into it
function drag_over(event) {
 event.stopPropagation();
 event.preventDefault();
}

Then, within the file_input() function, we have some additional lines of code:

function file_input(event) {
 event.stopPropagation();
 event.preventDefault();
 var files = undefined;
 if (event.dataTransfer.files !== undefined) {
 files = event.dataTransfer.files;
 } else if (event.target.files !== undefined) {
 files = event.target.files;
 }
 …
}

Adding File Sharing

[66]

First, we call event.stopPropagation and event.preventDefault() to ensure that
the default browser behavior doesn't interfere with how we want our user interface
to behave.

Then, we check if the event object contains a dataTransfer property, which contains
a list of files. If yes, we use that; otherwise, we fall back to the event.target.files
approach because we can then assume that the file_input() function was called by
the manual file selection instead.

And that's all we need to do to enable drag-and-drop based file sharing. The rest of
the file sharing functionality works the same, irrespective of whether the shared file
is selected manually or dragged into the browser window.

Adding JavaScript for transferring files
via WebSockets
We will discuss the RTCDataChannel-based file sharing, but first let's look at how
we can implement this using WebSockets. The file_input() function described
previously calls the following send_file() function.

// send selected file
function send_file(name, file_id, data) {
 ...
 var img = document.getElementById("file_img_src");
 img.onload = function() {
 ...
 send_file_parts("file", file_id, data);
 }
 img.src = data;
}

First, we select the file_img_src element that we will use for loading the file data.
Then, we set up an onload handler, and at the end of this, we call send_file_
parts(). This will slice the file data into chunks and send each of them to the
other server once the image has fully loaded. Then, we start the whole process by
assigning the data to image.src.

Now, let's look at the send_file_parts() function:

// break file into parts and send each of them separately
function send_file_parts(type, id, data) {
 var message_type = "new_file_part";
 ...
 var slice_size = 1024;

Chapter 6

[67]

 var parts = data.length/slice_size;
 if (parts % 1 > 0) {
 parts = Math.round(parts)+1;
 }
 for (var i = 0; i < parts; i++) {
 var from = i*slice_size;
 var to = from+slice_size;
 var data_slice = data.slice(from, to);
 store_file_part(type, id, i, parts, data_slice);
 signaling_server.send(
 JSON.stringify({
 token:call_token,
 type: message_type,
 id: id,
 part: i,
 length: parts,
 data: data_slice
 })
);
 }
}

First, we set message_type to new_file_part and then set the slice_size to 1024
characters. Then we work out how many parts we can slice the data into, and then
we loop through this process extracting a data.slice() each time and send it
through signaling_server.

Before we send each slice to signaling_server, we also store a copy of this in the
local file_store. And, when we receive a file part from the other browser, we also
use the same function to store these parts in the local file_store.

// store individual file parts in the local file store
function store_file_part(type, id, part, length, data) {
 if (file_store[id] === undefined) {
 file_store[id] = {};
 }
 if (file_store[id][type] === undefined) {
 file_store[id][type] = {
 parts: []
 };
 }
 if (file_store[id][type].length === undefined) {
 file_store[id][type].length = length;
 }
 file_store[id][type].parts[part] = data;
}

Adding File Sharing

[68]

Within the start() function, we also extend the signal handling code for both the
caller and the callee to handle the new_file_part message type.

 } else if (signal.type === "new_file_part") {
 store_file_part("file", signal.id, signal.part, signal.length,
signal.data);
 update_file_progress(signal.id,
 file_store[signal.id].file.parts.length,
 signal.length);

The previous code stores each part as it is received, and then calls the update_file_
progress() function that we will explore in more detail in a while.

Each file thumbnail also has an onclick handler included within the HTML
template that is bound to the display_file() function:

// show the full file
function display_file(event) {
 var match = event.target.id.match("file-img-(.*)");
 var file = file_store[match[1]].file;
 if (file.parts.length < file.length) {
 alert("Please wait - file still transfering");
 } else {
 window.open(file.parts.join(""));
 }
}

This function lets users view the full image file in a new window by clicking on the
thumbnail image in the shared file list. We also add in a simple check to make sure
that the file has finished transferring before we let the user view it.

Handling the file-sharing signals on
the server
As in the audio call only and text chat examples, yet again we can see that the
abstract design of the WebSocket based signaling server requires almost no updates
to support file sharing.

The primary change allows us to handle serving image files from an images/
directory so we can include the Share a new file button image and the new file-
arriving placeholder image.

 // web server functions
var http_server = http.createServer(function(request, response) {
 var matches = undefined;

Chapter 6

[69]

 if (matches = request.url.match("^/images/(.*)")) {
 var path = process.cwd()+"/images/"+matches[1];
 fs.readFile(path, function(error, data) {
 if (error) {
 log_error(error);
 } else {
 response.end(data);
 }
 });
 } else {
 response.end(page);
 }
});

The only other change required is to update the name of the source HTML file it
reads in using the fs package to video_call_with_chat_and_file_sharing.html
to match our new HTML user interface.

fs.readFile("video_call_with_chat_and_file_sharing.html",
 function(error, data) {

Just make this change, and then restart the signaling server, and you are ready to
start sharing files within your video call.

Sending a thumbnail preview before the
entire file
In order to create a friendlier and more responsive user interface, we have set up
the send_file process as a pipeline. First, it creates a thumbnail version of the
image that is scaled to fit within the 160px by 120px image area. Then, we slice this
thumbnail image and first send it to the other browser so it can be displayed while
the full data is being transferred. Then, we transfer the full data:

// send selected file
function send_file(name, file_id, data) {
 var default_width = 160;
 var default_height = 120;
 var img = document.getElementById("file_img_src");

First, we set up the default width and height for the image area and select the hidden
file_img_src element that we use in the first step of the thumbnail creation process.

 img.onload = function() {
 var image_width = this.width;
 var target_width = default_width;

Adding File Sharing

[70]

 var image_height = this.height;
 var target_height = default_height;
 var top = 0;
 var left = 0;

Then, within the onload function, we set up the variables we will use to scale the
image to fit within the 160px by 120px image area:

 if (image_width > image_height) {
 var ratio = target_width/image_width;
 target_height = image_height*ratio;
 top = (default_height-target_height)/2;
 } else if (image_height > image_width) {
 var ratio = target_height/image_height;
 target_width = image_width*ratio;
 left = (default_width-target_width)/2;
 } else {
 left = (default_width-default_height)/2;
 target_width = target_height;
 }

We check if the image is wider than its height. If it is, then we work out the ratio of
target_width to the actual image_width. Then we multiply image_height by this
ratio to get target_height. Then we work out the difference between default_
height and target_height and divide the difference by 2 to get the vertical offset.

If the image wasn't wider than its height, we check if it was taller than it is wide and
apply a similar process. Otherwise, it is a square image, and we adjust the scaling
algorithm appropriately.

Next, we select the hidden file_thumbnail_canvas and call getContext("2d") to
create a drawing context for this canvas, as shown in the following code:

 var canvas = document.getElementById("file_thumbnail_canvas");
 canvas.width = default_width;
 canvas.height = default_height;
 var cc = canvas.getContext("2d");
 cc.clearRect(0,0,default_width,default_height);
 cc.drawImage(img, left, top, target_width, target_height);
 var thumbnail_data = canvas.toDataURL("image/png");
 document.getElementById("file-img-"+file_id).src =
 thumbnail_data;
 send_file_parts("thumbnail", file_id, thumbnail_data);
 send_file_parts("file", file_id, data);
 }
 img.src = data;
}

Chapter 6

[71]

We call the drawImage() function on this context to render the image scaled down
to the size of the thumbnail image that we had calculated. Then, we call canvas.
toDataURL("image/png") to convert this thumbnail image into a base64 data URL
string, as discussed earlier.

We then pass this thumbnail_data to the send_file_parts() function before we
pass the full data object to the send_file_parts() function.

We also need to extend the signal handling in the start() function for both the
caller and the callee to handle the new_file_thumbnail_part signal message_type.

 } else if (signal.type === "new_file_thumbnail_part") {
 store_file_part("thumbnail", signal.id, signal.part,
 signal.length, signal.data);
 if (file_store[signal.id].thumbnail.parts.length ==
 signal.length) {
 document.getElementById("file_list").innerHTML =
 get_file_div(signal.id)+document.getElementById("file_list").
inner
 HTML;
 document.getElementById("file-img-"+signal.id).src =
 file_store[signal.id].thumbnail.parts.join("");
 }

This code calls the store_file_part() function just as the new_file_part signal
handler does. And then it checks if this part completes the transfer for this file. If it
does, then it injects the file HTML template into the top of file_list and assigns
all the combined parts into the file-img-n element's .src property to display the
thumbnail image.

Providing progress updates
To help the user understand when a file is still in the process of being transferred,
we have added some extra code. When a thumbnail first appears it is set to be semi-
transparent, and over the top of it we display a number that shows the percentage
of this file that has been transferred. The update_file_progress() function that
handles this logic is called from the new_file_part signal handler for both the caller
and the callee, and it uses values included in the new_file_part signal.

// show the progress of a file transfer
function update_file_progress(id, parts, length) {
 var percentage = Math.round((parts/length)*100);
 if (percentage < 100) {
 document.getElementById("file-progress-"+id).innerHTML =
 percentage+"%";
 document.getElementById("file-img-"+id).style.opacity = 0.25;

Adding File Sharing

[72]

 } else {
 document.getElementById("file-progress-"+id).innerHTML = "";
 document.getElementById("file-img-"+id).style.opacity = 1;
 }
}

First, we take the number of parts transferred so far and the length or total number
of parts, and use these variables to work out what percentage has been transferred so
far. If this is less than 100, we set the thumbnail's opacity to 0.25 and update the text
to show the percentage value. If this is 100, we set the thumbnail's opacity to 1 and
set the percentage value to an empty string so it is no longer shown.

Establishing an RTCDataChannel
connection
At the time of writing this chapter, the RTCDataChannel implementations are not
completely stable and are not inter operable between the different mainstream
browsers. However, the RTCDataChannel API has been designed to be almost
identical to the WebSocket API when it is being used, so the general code and
application logic we have defined previously should be able to be easily migrated to
the RTCDataChannel API when it is ready.

The primary difference is that the WebSocket API uses a new WebSocket()
based constructor, but the RTCDataChannel API uses a peer_connection.
createDataChannel() based constructor.

However, after the offer/answer flow is completed, the RTCDataChannel event
model is almost identical to the WebSocket API.

Transfering files via an RTCDataChannel
connection
The model here is the same as interacting with signaling_server, except in this
case the data is flowing directly to the other peer instead via the WebSocket server.

To send some data you simply call the data_channel.send() function just as you
call the signaling_server.send() function.

And to handle receiving the data you set up a data_channel.onmessage handler,
just like you set up the signaling_server.onmessage handler.

Chapter 6

[73]

In this way, the core usage of the two API's is almost identical. It is only the
underlying network implementation that really differs.

Other file-sharing options
As we have discussed, this example application has focused only on sharing one file
at a time and on only sharing image files. Extending this functionality to support
multiple files at a time and handling non-image files (for example, documents,
videos, and so on) would be a great to start extending this application.

Another option to explore is using typed arrays instead of serialized base64 data
URLs to send data. This can work in the same way either through the WebSocket
API or the RTCDataChannel API, and can add significant efficiencies.

And of course, if you extend this application to support WebRTC communication
between more than just two browsers, then you may also like to extend the file
sharing, because you could send a file to just one user by dropping the file onto
their video stream or to all users if you drop it into the chat area or file list.

On top of this, you can also use WebSockets and RTCDataChannels for sharing
interactive drawing spaces and annotations for creating an interactive whiteboard
layer for the application.

Another way is that you could capture snippets of audio and video to share
annotations that are like persistent slices of the video call. With this example
application you should have everything you need to start implementing your own
ideas and have them up and running in no time at all.

Summary
You should now have a clear understanding of how easy it is to adapt our initial
video call application to support file sharing. You should be able to update the
HTML user interface to add a shared files list. And you should now appreciate even
further, how the cleanly abstracted design of the signaling server allows us to easily
support new application scenarios.

You should also have all the information you need to start exploring other file
sharing options and ideas.

In the final two chapters, we will explore some specific case studies that show how this
type of application can be implemented to enable e-learning and team communication.

Example Application 1 –
Education and E-learning

This chapter maps out what is involved in introducing WebRTC into e-learning
applications. It explores the types of components that will be involved in integrating
this to create a fully working platform. After reading this chapter, you will have a
clear understanding of:

•	 How WebRTC can be applied in an e-learning context
•	 How an overall application architecture could be structured
•	 The types of issues that you may face
•	 The types of benefits you may realize
•	 How the overall opportunity can be summarized

Applying WebRTC for education and
e-learning
The whole education market is currently undergoing yet another revolution as
e-learning platforms such as Learning Management System (LMS), e-portfolios,
and Massive Online Open Course (MOOC) continue to reshape the whole
industry. This has created the perfect fertile ground for the integration of WebRTC.
More students and educators are interacting online everyday, but currently this is
primarily using standard web page and document-based user interfaces.

The only video and audio conferencing options commonly available to educators
and students today are those using proprietary systems, such as Skype, and Adobe
Connect. Each of these solutions requires additional software and often a completely
standalone application to be installed. The setup time to establish each of these calls is
usually quite high, and some of these solutions also require a licensing fee or setup cost.

Example Application 1 – Education and E-learning

[76]

A recently introduced solution that is gaining quite a bit of attraction in the education
and e-learning space is Google Hangouts. Yet, even this requires the download of
a proprietary browser plugin and also requires that each participant has an active
Google Plus account.

With the introduction of WebRTC, it is now possible to skip all of these setup hurdles
and seamlessly add video conferencing, screen sharing, and a whole host of other
real-time interaction options to the existing web tools that the educators and students
are already using.

By just adding some simple JavaScript and HTML to their existing web pages, these
new interaction options can quickly and easily be introduced. And from the end
user's perspective, it couldn't be any simpler. They would just see one or two new
buttons appearing on their page, and all they have to do is click on them to start a
video call, screen sharing session, or more. There is no more installing of applications
or plugins and dealing with the complexity of setting up calls.

Overall application architecture
The general architecture for this type of application or platform consists of seven
key elements that work together to deliver the overall experience:

•	 Educators
•	 Students
•	 WebRTC capable browsers
•	 Existing or new web applications
•	 Signaling server
•	 TURN server
•	 Archive server

Let's look at each of these elements in more detail.

Educators
These are the users that drive the creation of the educational content and manage
the overall e-learning experience. Many of them have quickly adopted the evolving
online tools; however, there are also a large number of them that are struggling
with the new technologies and have trouble keeping up with today's high rate of
technological change.

Chapter 7

[77]

When integrated correctly, WebRTC supports both of the early adopters and the
not-so-technical educators by making it easy to deliver a state-of-the-art e-learning
experience. The early adopters can experiment with new functionality and customize
these new tools to their needs. The not-so-technical educators can focus on this as a
simple extension of their existing face-to-face teaching delivery.

Students
Like educators, students also consist of both early adopters and not-so-technical
users. If they are accessing the web application on campus, then their network access
is likely to be relatively fast and reliable. However, many online students participate
from home or even work from a wide range of geographical locations where network
quality can vary significantly.

The peer-to-peer nature of WebRTC means that the optimal performance is
extracted from the available network which increases the chances of a more
positive e-learning experience.

WebRTC capable browser
As discussed in Chapter 1, An Introduction to Web-based Real-Time Communication,
Google Chrome and Mozilla Firefox browsers now support the draft, WebRTC 1.0.
This is now over 50 percent of the web browser market, and Google claims that this
makes WebRTC available to over 1 billion web browsers so far.

However, many educational institutions currently enforce a Standard Operating
Environment (SOE) internally that limit users to Microsoft Internet Explorer Version
8 or similar. These types of limitations imposed by IT departments may provide one
of the biggest hurdles faced by educators trying to take advantage of WebRTC.

Existing or new web application
If students and educators are already using LMSs such as Moodle, ePortfolio systems
such as Mahara or MOOCs in general, then these platforms provide the perfect
launch pad for connecting these users via WebRTC.

Many educational institutions are also working to create new applications that take
advantage of the new web browser and mobile technologies. For example, many
institutions now offer "Recognition of Prior Learning" to enable students to earn
credits for skills and experience they can clearly demonstrate they already have.
This often involves the collection of images and video or audio evidence of them
performing some activity. WebRTC can be used to extend this in many ways and
is likely to create a whole new type of evidence collection.

Example Application 1 – Education and E-learning

[78]

Signaling server
As you have seen in the previous chapters, it is relatively straightforward to implement
an extensible and lightweight signaling server. In the e-learning context, it is also likely
that educational institutions will want to integrate authentication and authorization
into this server to provide identity management features and functionality.

TURN server
While WebRTC is built upon the core concept of direct peer-to-peer communication,
the current industry experience is that legacy network restrictions may force around
15 percent, and in some cases, even up to 40 percent of users to require a media relay
server. The most common solution for this is a Traversal Using Relays around NAT
(TURN) server. There are a range of commercial and open source options available
at http://code.google.com/p/rfc5766-turn-server/.

Archive server
There are many different use cases in an e-learning context where recording a copy
of a WebRTC video or audio call would be useful or even a hard requirement, due to
auditing policies and communication regulations. Recording screen sharing sessions
or even other data driven interactions (for example, an interactive whiteboard
session) may also be very useful or also required.

This functionality requires a dedicated service that can capture and store WebRTC
streams and make them available in an easily findable way. However, the current
WebRTC specification does not make this an easy task, and there are currently very
few options available for this solution.

Many service providers are developing their own custom archive servers using the
open source C++ code base available from webrtc.org.

Others are using JavaScript within the browser to capture the stream elements and
then sending them via a WebSocket or XHR connection to then be encoded on the
server side; however, this is not a network-efficient solution. The still evolving
MediaStream Recording API available at http://www.w3.org/TR/2013/WD-
mediastream-recording-20130205/ may be useful for browser side developments
for archiving.

Chapter 7

[79]

Potential issues that may be faced
While introducing WebRTC into an e-learning environment, you may find that there
are a number of issues that are commonly faced:

•	 Privacy
•	 Copyright and intellectual property
•	 Restrictive networks
•	 Restrictive SOEs
•	 Outdated student browsers
•	 Interoperability

Let's take a look at each of these issues in more detail.

Privacy
Privacy is a key issue facing any video or audio recording application and this issue
is made more complex by the distributed nature of the web.

The educational institution providing the e-learning application may have specific
privacy policies designed to protect their students; however, it is likely that these
policies are out of date and in some cases, may be too restrictive or even prohibit
some WebRTC style applications.

The educators employment contracts may also include clauses designed to both
protect the educator and to restrict their behavior when it comes to video or audio
recording devices. It is important that these restrictions be clearly understood and
possibly even reviewed and revised.

The governmental departments that control the overall delivery of education may
also impose restrictive privacy policies designed to protect both the educators and
students. However, these may also be out of date and in some cases, completely
prohibit WebRTC style interactions.

To make this even more complex, users may be bound by different policies
or regulations on campus, at home, and at work. It may also happen that in a
completely online environment, the educators and students may be in completely
separate geographical and legal jurisdictions with wildly differing regulations.

Example Application 1 – Education and E-learning

[80]

The first and most important step in addressing the complex issue of privacy is to
ensure that the capture, handling, and storage of audio, video, and data is managed
in a transparent and well-documented way. From there, it is up to each educational
institution to address how they will embrace and manage these risks.

It is also important for all educational institutions to understand that this becomes
a key part in remaining competitive in the modern education industry and that, if
they do not address this issue, then they will be left struggling to provide their most
basic services.

Copyright and intellectual property
Recorded video and audio conferences are content in their own right and it is
important that the copyright of these works are clearly defined. Many educators
may believe that any lessons they deliver are owned by them or their institution.
However, in this new environment, this may fall into more of a collaborative
codesign model where the final output of a session may be collectively owned.

It is also likely that these video or audio calls and any screen-sharing sessions may
also capture other copyright material, such as courseware, webpages, and other
content in view of the camera. The intellectual property rights of the owners of
this content must be clearly addressed where relevant, and it is important that
any recording or archiving solutions allow clear attribution, as well as the ability
to easily find and remove or obfuscate copyright material.

Restrictive networks
Both inside and outside the educational institution, there may be restrictive network
policies in place that restrict or even prohibit WebRTC style interactions.

IT departments inside educational institutions or work environments often shape
network traffic to reduce costs and prevent abuse. Constant streams of data, audio,
and video often push these networks beyond the limits they were dimensioned for.

These network administrators have also often implemented firewall restrictions that
prevent peers on the same network from communicating with each other to prevent
malware and other types of network abuse. In these cases, the connections will need
to be routed out through the Internet and back again, often via a media relay server
(refer to the TURN server section described earlier and in earlier chapters). This
effectively removes much of the benefits of the peer-to-peer nature of WebRTC.

Chapter 7

[81]

In the consumer networks, users may also find that their ISP has provided limits
on the speed of data uploads. The normal consumer ISP network design is
asymmetrical, and is focused on delivering optimal download speed. However,
WebRTC streams such as video calls ship data in both directions and can be
heavily impacted by this outdated network design.

If the user is using a mobile network, then it is even more likely that the imposed
network policies and embedded proxies limit direct peer-to-peer streams.

However, all of these issues clearly label the impacted network as suffering from
outdated "legacy design" issues. All network providers will have to deal with the
new requirements of this sensor driven real-time web. Network providers that
embrace this challenge and provide superior access will be able to win the loyalty
of their users, and in the consumer space, will likely grow their market share
and profitability.

Restrictive SOEs
Many educational institutions and corporate work environments have IT departments
that enforce a SOE for personal computers. In many cases, this is restricted to older
versions of Microsoft Internet Explorer which do not support WebRTC. In this
environment, these users will not be able to access these additional features and any
e-learning application should detect the browser capabilities and notify the user
accordingly (refer to the webrtc_polyfill.js code described in previous chapters).

However, all of these institutions and corporations are under pressure to modernize
their approach to deliver the benefits made available by up-to-date web browsers.

Many users are also working around these IT department restrictions by bringing
their own mobile devices or even laptops (commonly known as Bring Your Own
Device (BYOD). This is a significant strategic issue that all IT departments are
facing today.

Outdated student browsers
Depending upon the economic and technical profiles of the students, you may
also find that their own computers are running an outdated browsers. Again it is
important that your e-learning application detects the capabilities of their browser
and notifies the user clearly about their upgrade options if they want to take
advantage of these new features.

Example Application 1 – Education and E-learning

[82]

With mobile devices based on iOS and Android, this is becoming less of a problem,
because the operating system vendors have built automatic upgrade functionality
directly into the core user experience, and you will find that most users are running
close to the latest version.

The mainstream browser vendors including Chrome and Firefox have also moved to
this automatic update model and users of these browsers are now also more likely to
be running close to the latest version. The benefit here is that if you encourage your
users to move to these platforms once, then after that the problem is largely handled
by the browser vendor from then on. The challenge here is that this then becomes
a moving target and automated updates may have an impact on your application
in negative ways, if you do not monitor the evolution of these new standards on an
ongoing basis.

Interoperability
Although Chrome and Firefox have shown good interoperability based on their
rolling version updates, you may find that interoperability still currently varies.
During the writing of this book, there were a number of times where previously
working examples stopped operating due to updates in one type of browser or
another. This is the nature of a pre-WebRTC 1.0 standard, and this is likely to
become less and less of an issue as the whole environment stabilizes.

Benefits that can be delivered
While there are still quite a few issues facing the introduction of WebRTC into an
e-learning environment, the overall benefits are appealing and significant.

The benefits of the ease of use and removal of barriers for setting up an audio or
video call or screen sharing session cannot be underestimated. This will drive
more interpersonal interaction between educators and students, among students
themselves, and even among educators themselves. This makes the overall e-learning
environment more engaging and can lead to better learning outcomes and higher
satisfaction levels.

The distributed peer-to-peer nature of WebRTC can also lead to some significant
network and infrastructure cost reductions. While some media relay / TURN server
infrastructure may be required today, this will be significantly less than using older
video conferencing technologies. If you are able to just focus on capable, early
adopters initially, then you may be able to skip this cost altogether.

Chapter 7

[83]

WebRTC is also quickly expanding onto mobile browsers, making it more widely
available than traditional video conferencing solutions. This will lead to a wider
adoption and make your e-learning platform more accessible and applicable in a
wider range of real world situations.

This also opens the door to in situ learner support applications where educators
and experts can provide real-time training and support in the work place, creating
a whole new class of e-learning applications.

In a similar way, this also opens the door to educator-supported accessibility for
visually and cognitively impaired students. By using audio conferencing and data
sharing, an educator can guide a student through some specific course content or
interaction, significantly improving the overall accessibility.

The JavaScript and HTML driven nature of these WebRTC applications also means
that more in-house customization can be implemented within each educational
institution, or even by the educators themselves. You are no longer restricted to the
look and feel and functionality provided by some distant and unresponsive video
conferencing vendor.

And this also means that these applications can be adapted to evolve more quickly
to meet the demands of the students and educators. All kinds of new interaction
models will be created in e-learning over the next few years, and this is an exciting
time to jump in and start implementing your own ideas.

The opportunity for educators
When any landscape changes, new opportunities are created. The introduction of
WebRTC-based interactions into the e-learning environment means that educators
that adapt to take advantage of this new sensor driven real-time web will be able
to engage more closely with their students, achieve better learning outcomes, and
naturally advance their personal brand and career. Many educators have embraced
similar benefits through social media, now WebRTC is going to make interpersonal
and real-time interactions with students seamless and easy.

The key point here is that many educators won't think of this in terms of WebRTC.
They will just be able to focus on interacting in richer ways with their students, and
exploring new ways of delivering their courseware.

Example Application 1 – Education and E-learning

[84]

Summary
You should now have a clear understanding of how WebRTC can be implemented into
an educational and e-learning context. You should understand the key components
that make up this overall application architecture, and how this relates to existing
e-learning applications. You should have a good picture of the types of issues you are
likely to face while working to implement WebRTC into your e-learning environment.
You should also understand the key benefits that will be likely delivered on adding
WebRTC to your e-learning applications and the opportunities this will open up for
educators who adapt to this new environment.

In the final chapter, we will explore a similar case study that shows how this type
of application can be implemented to enable team communication.

Example Application 2 –
Team Communication

This chapter maps out what is involved in introducing WebRTC into your team
communication application. It explores the types of components that will be involved
in integrating this to create a fully working platform. After reading this chapter, you
will have a clear understanding of:

•	 How WebRTC can be applied in a team communication context
•	 How an overall application architecture could be structured
•	 The types of issues that you may face
•	 The types of benefits you may realize
•	 How the overall opportunity can be summarized

Applying WebRTC for team
communication
Today, teams form in all kinds of contexts and for all kinds of reasons. Some
are commercial teams working inside startups or fully formed companies, or
corporations. Some are collaborators within non-profit or social enterprises.
And some are contributors to open source projects. Or, they could just be friends
or family staying in touch or planning a group event.

The constant now is that all of the team members are very likely to be connected
through the web, and many of them are comfortable with popular chat and micro
blogging tools, such as Facebook, Twitter, and Google Plus. Team members are
now expected to be able to contact each other anywhere, anytime. Participating in
one or more distributed teams is now a very normal daily experience.

Example Application 2 – Team Communication

[86]

However, the most common video and audio conferencing options available to
managers and team participants are proprietary systems, such as Skype, WebEx, and
GoToMeeting. Each of these solutions requires additional software configuration and
often a completely standalone application to be installed. The setup time to for each of
these calls is also quite high, and the web meeting solutions often require a licensing
fee or setup cost.

Just like in the e-learning sector, Google Hangouts are also gaining quite a bit of
traction in the team communication space. But, as we have discussed, even this
requires the download of a proprietary browser plugin and that each participant
has an active Google Plus account.

WebRTC now makes it possible to remove these setup hurdles so that you can
seamlessly add video conferencing, screen sharing, and a whole host of other
real-time interaction options to bring online teams closer together.

There are already a wide range of new web-based services popping up that are
targeting teams, and of course, if you have read this book, then you can easily
create your own application too.

In a modern WebRTC-enabled team, you should be able to clearly see who's
available at any point in time, and then quickly and easily start talking to them
using text or using audio and video by just clicking their photo. No more scheduling
meetings or booking web meetings with special access codes is required. And,
sharing a file is as simple as dragging it onto their photo in your team list. You can't
get much more connected than that!

Overall application architecture
The architecture for this type of application or platform generally consists of
seven key elements that work together to deliver the overall experience:

•	 Managers
•	 Team members
•	 WebRTC capable browser
•	 New and existing web applications
•	 Signaling server
•	 TURN server
•	 Messaging server

Let's look at each of these elements in more detail.

Chapter 8

[87]

Managers
These are the people that are responsible for bringing the team members together
and driving them to achieve a specific set of goals. Managers need to have control
of these team applications and be able to add and remove members easily.

They will also want to be able to see information about the activity of each member,
and in a business context ideally, also be able to tie these back to key performance
indicators so that they can track and manage each individual.

In both a commercial and a non-commercial context, the levels of participation from
each of the team members may also be available for all to see, because online teams
tend to act more like meritocracy where status is based on performance.

Team members
These are the individuals that are the focus of the team application. They may be
distributed all across the globe and connected via all kinds of networks and devices.

The key for these team members is to remove the barriers, so they can communicate
as freely as possible. They tend to already have a range of tools they use for tracking
their tasks and planning their work. The WebRTC enabled team application is really
just there to act as a form of glue, so they can all stay connected and collaborate more
easily around the other tools they already use.

WebRTC capable browser
As discussed earlier, Google Chrome and Mozilla Firefox browsers now support the
draft WebRTC 1.0. This is now over 50 percent of the web browser market, and Google
claims that this makes WebRTC available to over 1 billion web browsers so far.

Many corporate team environments enforce an SOE that limits users to older
versions of Microsoft Internet Explorer in some cases, such as the Banking and
Insurance sectors, this can be as old as Version 6. These limitations imposed by IT
departments can provide a significant barrier that can completely block the adoption
of WebRTC. However, teams that are already collaborating online tend to be more
like early adopters and often use their own laptops and select their own browsers.

Teams in the more social and open environments will almost definitely just be using
their own computers or mobile devices and will be able to select their own browser.

Example Application 2 – Team Communication

[88]

New and existing web applications
Most teams today do not tend to have a common web application open all the time.
Many use Webmail (for example, Gmail) and a web-based ticketing system. But
both of these tend to be provided by external vendors and don't usually allow you
to inject new JavaScript and HTML into them easily. Some teams may also use an
intranet; although, this is becoming less and less common. So it is likely that you
will need to create a new team web app to bring them all together.

The application we developed in Chapter 5, Adding Text-based Chat, that included
video calls, text-based chat, and file sharing can provide a great starting point for
creating your own team application.

You will need to add support for more than two participants, and you will also likely
want to add support to show their presence or availability. You will probably also
want to use predefined hash-based call tokens to define topics or rooms that your
team members can join or cluster around instead of the randomly generated call
tokens we used.

All of these options are simple extensions of the base application we have already
developed. And best of all, you have complete control over the way it works and
how it looks. If you or any of your team comes up with new ideas about how it
should work, then you can simply update the code to create them yourself. You
can even use the application to collaborate with your team on the process of
customizing and refining the app itself.

Signaling server
Again, we see here the benefits of the extensible and lightweight signaling server we
built in previous chapters. In the team communication context, it is also likely that
you will want to integrate some form of authentication and authorization into this
server to provide identity management features and functionality. This is also where
you are likely to integrate the presence management so you can share information
about people's availability. But the underlying structure of the signaling server we
have already built should need only minor modifications.

TURN server
As discussed in the e-learning context, WebRTC is built upon the core concept of
direct peer-to-peer communication. But the current industry experience is that
legacy network restrictions may force approximately 15 percent, and possibly
even up to 40 percent of users to require a media relay server.

Chapter 8

[89]

However, in an online team of early adopters, this rate is likely to be much lower,
and you may certainly choose to focus on capable browsers and networks only
with a fall, back to text-based chat for other participants.

If you do require a TURN server, then there are a range of commercial and open
source options available at http://code.google.com/p/rfc5766-turn-server/.

Messaging server
There are a range of features or functionalities that can loosely be described as
messaging that you may like to use to extend your team communications. This
messaging server may be driven by commands sent through the signaling server,
but is likely to be a standalone service on its own.

The types of features you may want this to provide include voice and video mail
messages, automated logging of sessions and chat logs, team reminders, time
tracking, calendar updates, and general event logging or note taking. The basis of
this could start out very similar to the types of "bots" that are commonly developed
for Internet Relay Chat (IRC) servers. But in many ways, it could also resemble the
Unified Messaging (UM) or IP Multimedia Subsystem (IMS) servers that Telco has
been promoting over the last decade. Wherever possible, this should also provide a
seamless gateway to your other existing applications and services.

Potential issues that may be faced
When integrating WebRTC into your team-based communication, you are likely
to find a number of issues that are commonly faced:

•	 Privacy
•	 Data security
•	 Restrictive networks
•	 Restrictive SOEs
•	 Interoperability
•	 Timezones

Let's take a look at each of these issues in more detail.

Example Application 2 – Team Communication

[90]

Privacy
As in e-learning, privacy is a key issue facing any video or audio recording
application within team communications. And as we have discussed, this issue is
made more complex by the distributed nature of the web.

In a commercial or organization-based context, the team application may have
specific privacy policies enforced. It is possible that these policies are out of date,
and, in some cases, may be too restrictive or even prohibit some WebRTC-style
applications. But it is equally as likely that no well-structured policies have yet
been put in place, which can be just as challenging.

The team members' employment contracts may also include clauses designed to
restrict their behavior when it comes to data sharing and possibly using video or
audio recording devices. It is important that these restrictions be clearly understood
and, where necessary, reviewed and revised.

There may also be government regulations that deal with using recording devices
in the workplace, homes, or in public places. These are the same sort of issues that
wearable devices including cameras (for example, Google Glass) are currently
working to understand.

To make this even more complex, different team members may be bound by different
policies or regulations at work, at home, and when they are out and about. Also in a
completely online environment, the different team members may be in completely
separate geographical and legal jurisdictions with wildly differing regulations.

Because we have discussed previously, the first and most important step in addressing
the complex issue of privacy is to ensure that the capture, handling, and storage of
audio, video, and data is managed in a transparent and well-documented way. From
there, it is up to each team to address how he or she will embrace and manage these
risks. This is just part of participating in a modern, efficient, distributed online team.

Data security
As communication and file or data sharing is made so simple by adding WebRTC,
it is also possible that private files, data, and other information can then easily be
leaked outside the controlled team environment. This can happen inadvertently,
or it can be an explicit act by one or more of the team members. This is a similar
challenge to that introduced by small USB drives and web-based e-mail within the
existing business environment.

It is important that clear data security policies are in place and that where necessary
secure transport protocols (for example, SSL or TLS) are used for all WebSocket and
WebRTC data exhanges.

Chapter 8

[91]

This is not the case with the current demonstration
applications from this book.

It is also important that these policies and practices are clearly understood by all
the team members, and that a culture of secure data handling is built into the team
from the ground itself.

Restrictive networks
At any point, there may be restrictive network policies applied that restrict or even
prohibit WebRTC-style interactions.

IT departments inside companies or corporations tend to shape network traffic to
reduce costs and prevent abuse. Constant streams of data, audio, and video often
push these networks beyond the limits for which they were designed.

Network administrators also tend to implement firewall restrictions that prevent
peers on the same network communicating with each other to prevent malware and
other types of network abuse. In these cases, the connections may need to be routed
out through the internet and back again via a media relay server (refer to the TURN
server section described before and in earlier chapters). This removes the benefits of
the peer-to-peer nature of WebRTC.

In the consumer network space, users may also find that their ISP has provided
limits on the speed of data uploads. Consumer ISP networks are designed to be
asymmetrical and are focused on delivering optimal download speeds. However,
WebRTC streams, such as video calls, ship data in both directions and are heavily
restricted by this outdated network design.

If any of the team members are using a mobile network, then it is even more
likely that the imposed network policies and embedded proxies could limit
direct peer-to-peer streams.

All of these issues position the impacted network as suffering from an outdated
"legacy design". All network providers will have to deal with the new requirements
of this sensor-driven, real-time web. Network providers that embrace this challenge
and provide superior access will then be able to win the loyalty of their users, and in
the consumer space, will likely grow their market share and profitability.

Example Application 2 – Team Communication

[92]

Restrictive SOEs
Corporate work environments often have IT departments that enforce a SOE for
personal computers. In many cases, this is restricted to older versions of Microsoft
Internet Explorer which do not support WebRTC.

In this type of environment, these users will not be able to access the added WebRTC
features at all. This means it is essential that your team communication application
should detect the browser capabilities and notify the user accordingly (refer to the
webrtc_polyfill.js code described in previous chapters).

Yet, all of these corporate IT departments are already under pressure to modernize
their approach, so they can unlock the benefits made available by up-to-date
web browsers.

Many team members also work around these IT department restrictions by bringing
their own mobile devices or even laptops (BYOD). This is a significant strategic
issue that all IT departments are facing today, and is likely to be even more common
among early adopters that work in online teams.

Interoperability
As we have discussed earlier, Chrome and Firefox have shown good interoperability.
But based on their rolling version updates, you are likely to find that interoperability
still currently varies. During the writing of this book, there were a number of times
where previously working examples stopped working because updates in one type
of browser or another had impacted them negatively. Unfortunately, this is the
nature of a pre-WebRTC 1.0 standard, and this is likely to become less of an issue as
the whole environment stabilizes.

Timezones
As teams become more geographically distributed, you may also find timezones
becoming a significant hurdle that you must handle. The sun is constantly rising
somewhere in the world, and ensuring that key team members are all available at
important times is critical. This is not specifically a WebRTC issue, but just part of
the challenge of running a distributed online team. Ironically, the best way to deal
with this issue is to ensure that there is open and clear communication within the
team about this. And this is exactly what WebRTC helps to enable.

Chapter 8

[93]

Benefits that can be delivered
Team communication can be one of the best environments to benefit from the early
introduction of WebRTC.

By streamlining communication, removing the barriers for setting up an audio or
video call, or screen sharing session, you can completely reshape the way your team
works. You can drive more interpersonal interaction among the whole team.

The distributed peer-to-peer nature of WebRTC can also lead to significant network
and infrastructure cost reductions. While some TURN server infrastructure may be
required today, this will be significantly less than using older video conferencing
technologies, where web or video conference vendors were required. And, if you are
able to focus on capable, early adopters initially, then you may be able to skip this
cost altogether.

WebRTC is also quickly expanding onto mobile browsers, making it more widely
available than traditional video conferencing solutions. This will lead to a wider
adoption and gets the team connected and communicating no matter where they
are. If any of your team is out in the field, then this alone can revolutionize how
you all work.

This also opens the door to infield support applications, where team members
can collaborate in real-time in the locations where it's most relevant. Your team
expert can help guide your field service engineers to solve technical issues. Or
your manager may help your sales staff resolve an issue or close a contract with
a key customer. Or your domain expert may help your volunteers collect plant
specimens or crucial data from an important location. The distance between all of
your team members has now collapsed, and the friction of legacy communication
systems can now be removed.

The JavaScript- and HTML-driven nature of these WebRTC applications also
means that more in-house customization can be implemented. Possibly even
the team members themselves can adapt and change the application. You are
no longer restricted to the look and feel and functionality provided by some
distant and unresponsive solution provider.

This also means that these applications can be adapted to evolve more quickly
to meet the demands of the whole team. You now have the tools to build exactly
the type of communication platform you need.

Example Application 2 – Team Communication

[94]

The opportunity for managers
Communication is the lifeblood of any modern team, and WebRTC is reshaping
the communication landscape all around us. This is creating all kinds of new
opportunities, and the managers that help their teams take advantage of this new
sensor driven real-time web will be able achieve more, and advance their personal
careers. Many teams have struggled to adapt to the new world of social media. Now,
WebRTC is going to make the world inside your team even more like a rich social
media space and the managers that adapt to this will be the leaders of tomorrow.

If you focus on the social, cultural, and interpersonal aspects of this new environment,
and work to create a team communication application that seamlessly connects your
team members, then you will be able to create a whole new generation of highly
performing teams.

To start with, don't focus on building all kinds of features and functionality into the
application. It is easy to get distracted by focusing on the tools themselves. What
is most important is that the user experience is simple and effective, and that team
members quickly integrate it into their daily activities. From there you can expand
the application as much as you like. But without this, focusing on features is purely
a distraction.

Summary
You should now have a clear understanding of how WebRTC can be integrated into
a team communication application. You should understand the key components that
make up this overall application architecture and how this enables you to create a
new type of team web application. You should have a good picture of the types of
issues you are likely to face while working to implement WebRTC into your team
communication. You should also understand the key benefits of adding WebRTC to
your team communication application will likely deliver, and the opportunities this
will open for managers and teams as a whole as they adapt to this new environment.

This completes our Getting Started with WebRTC journey. Now, you should be
well-equipped to start creating your own WebRTC applications and implementing
your own ideas. I hope you enjoyed reading this book and found the demonstration
code clear and the example application discussions useful.

Index
Symbols
<input> element

used, for adding files 63, 65

A
add_chat_message() function 56
addIceCandidate() method 22
Apple

about 12
WebRTC, enabling 12

architecture, e-learning application 76
architecture, team communication

application 86
archive server 78
audio only call, WebRTC

audio stream processing options 51
creating 47
flow, adding to signaling server 50
HTML user interface 48, 49, 50
setting up 47

audio stream processing options 51

B
Bowser 12
Bring Your Own Device (BYOD) 81
browser compatibility, WebRTC

about 9
Apple 12
Chrome, on Android 10, 11
Chrome, on PC 9
Firefox, on Android 10
Firefox, on PC 9
Microsoft 12

Opera 11
updates 13

C
callee browser

answer, creating 42
callee's flow, RTCPeerConnection API

about 21
JSEP offer/answer process 22
local camera, accessing with

getUserMedia () 22
message handler, registering 22
onaddstream handler, registering 22
onicecandidate handler, registering 22

caller browser
offer, creating 40

caller's flow, RTCPeerConnection API
about 20
JSEP offer/answer process 21
local camera, accessing with

getUserMedia() 21
message handler, registering 21
onaddstream handler, registering 21
onicecandidate handler, registering 21

capabilities() method 20
Chatroulette app

about 45
URL 45

chatting
enabling, JavaScript functions used 56

chromakey effect
about 44
URL 45

Chrome, for Android
WebRTC, enabling 10

[96]

Chrome, on PC
WebRTC, enabling 9

Chromium project 11
click_file_input() function 63
communication flow

about 15
candidates, finding 17
media session, negotiating 17
RTCPeerConnection streams, starting 18
signals, starting 16
users, connecting 16

communication, WebRTC
general flow 15
setting up 15
signaling options 18
WebSocket API 18

connect_stream_to_src() function 28, 42, 44
copyright property 80
createAnswer() method 22
createServer() function 37
CU-RTC-Web

URL 12

D
data security 90
dataTransfer property 66
display_file() function 68
drag-and-drop 65
dragover event handler 62
drag_over() function 65
drawImage() function 71
drop event handler 62

E
educators

about 76
opportunities 83

e-learning application
architecture 76
elements 76
WebRTC, applying 75, 76
WebRTC implementing, benefits 82
WebRTC implementing, issues 79

e-learning application, elements
archive server 78
educators 76

Educators 76
new web application 77
signaling server 78
students 77
TURN server 78
WebRTC capable browser 77

Extensible Messaging and Presence
Protocol(XMPP) 57

F
file_add div element 61
file_add onclick handler 62
file_img_src image element 61
file_input change event handler 62
file_input element 61
file_input() function 63, 66
file_list div element 61
files

adding, <input> element used 63, 65
transfering, via RTCDataChannel

connection 72
file sharing

adding 59
drag-and-drop 65
enabling, JavaScript used 62
HTML user interface 60, 61
options 73
signals, handling 68, 69
via WebSockets, by adding

JavaScript 66- 68
file_sharing div

elements 61
file_thumbnail_canvas element 61
Firefox, for Android

WebRTC, enabling 11
Firefox, on PC

WebRTC, enabling 9
flow, audio only calls

adding, to signaling server 50
fs.readFile() function 37

G
get_file_div() function 64
getUserMedia API (gUM API) 19
Google AppEngine Channel API 16
Google Hangouts 76

[97]

H
HTML user interface, audio only calls 48
HTML user interface, for file sharing 60, 61
HTML user interface, for text-based

chat 54, 55
http_server variable 37

I
ICE Framework

reference link 17
intellectual property 80
Internet Engineering Task Force (IETF) 8
Internet Relay Chat (IRC)

about 57
servers 89

interoperability 82, 92
IP Multimedia Subsystem (IMS) 89

J
JavaScript

adding, for file sharing via
WebSockets 66-68

adding, to enable file sharing 62
JavaScript functions

adding, to enable chatting 56
JSON.parse() method 38

L
Learning Management System (LMS) 75
listen() function 37
local video streams

previewing 42
log_comment function 40
log_error function 40

M
managers

about 87
opportunities 94

Massive Online Open Course (MOOC) 75
MediaElement 20
MediaStream API 19, 20

MediaStream Recording
URL 78

messaging server 89
Microsoft

about 12
WebRTC, enabling 12

N
NAT Traversal

reference link 17
Node.js

about 18
URL 26

O
onload function 70
Opera

about 11
WebRTC, enabling 11

outdated student browsers 81

P
peer_connection variable 30
peer-to-peer streams

establishing 43
privacy 79, 90
progress updates

providing 71, 72

R
readAsDataURL() function 65
restrictive networks 80, 91
restrictive SOEs 81, 92
RTCDataChannel API 23
RTCDataChannel connection

establishing 72
files, transfering 72

RTCPeerConnection API
about 20
callee's flow 21
caller's flow 20
location 23

RTCPeerConnection streams 18

[98]

S
Safari 12
send_file() function 65, 66
send_file_parts() function 66, 71
Session Description Protocol (SDP)

reference link 17
setLocalDescription() method 22
setRemoteDescription() method 22
setup_video() function 42, 43
signaling server 78

about 88
setting up 35-40

socket.io
URL 18

Standard Operating Environment (SOE) 77
start() function 29, 56, 62, 68
states() method 20
stream processing

options 44
students 77
STUN server

reference link 17
stun_server variable 28

T
team communication application

architecture 86
elements 86
WebRTC, applying 85, 86
WebRTC implementing, benefits 93
WebRTC implementing, issues 89

team communication application, elements
managers 87
messaging server 89
signaling server 88
team members 87
TURN server 88
WebRTC capable browser 87

team members 87
text-based chat

adding, to video chat app 53
HTML user interface 54, 55
signals, handling 57

text message processing
options 57

thumbnail preview
sending 69-71

timezones 92
Traversal Using Relays around NAT server

(TURN server)
about 78, 88
reference link 17
URL 78

U
Unified Messaging (UM) 89
update_file_progress() function 68
users

connecting, web server used 27-35

V
video chat app

file sharing, adding 59
text-based chat, adding to 53

W
Web Audio API

URL 51
Web-based Real-Time Communication.

See WebRTC
WebKit platform 11
WebRTC

about 7
applying, for e-learning application 75, 76
audio only call, creating 47
browser compatibility 9
communication, setting up 15
MediaStream API 19
RTCDataChannel API 23
RTCPeerConnection API 20
testing 9
URL 13
uses 8

WebRTC 1.0. 77
WebRTC capable browser

about 77, 87
new web application 88

[99]

WebRTC video call
setting up 25, 26

web server
used, for connecting two users 27-35

WebSockets
about 16, 18
used, for file sharing 66-68
using 18

World Wide Web Consortium (W3C) 8
World Wide Web (WWW) 7

X
XMLHttpRequest API (XHR API) 7

Thank you for buying
Getting Started with WebRTC

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Lync 2013 Unified
Communications: From Telephony
to Real-time Communication in the
Digital Age
ISBN: 978-1-84968-506-1 Paperback: 224 pages

Complete coverage of all topics for a unified
communications strategy

1.	 A real business case and example project
showing you how you can optimize costs and
improve your competitive advantage with a
Unified Communications project

2.	 The book combines both business and the latest
relevant technical information so it is a great
reference for business stakeholders, IT decision
makers, and UC technical experts

3.	 All that you need to know about Unified
Communications and the evolution of
telecommunications is packed in this book

Socket.IO Real-time Web
Application Development
ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-time web applications powered by
Socket.IO

1.	 Understand the usage of various socket.io
features like rooms, namespaces, and sessions

2.	 Secure the socket.io communication

3.	 Deploy and scale your socket.io and Node.js
applications in production

Please check www.PacktPub.com for information on our titles

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1.	 Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2.	 From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3.	 Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

IBM Lotus Quickr 8.5 for Domino
Administration
ISBN: 978-1-84968-052-3 Paperback: 252 pages

Ensure effective and efficient team collaboration by
building a solid social infrastructure with IBM Lotus
Quickr 8.5

1.	 Gain a thorough understanding of IBM Lotus
Quickr 8.5 Team Collaboration, Repository, and
Connectors

2.	 Recommended best practices to upgrade to the
latest version of IBM Lotus Quickr 8.5

3.	 Customize logos, colors, templates, and more to
your designs without much effort

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to Web-based Real-Time Communication
	Introducing WebRTC
	Uses for WebRTC
	Try WebRTC yourself right now!
	Browser compatibility
	Chrome and Firefox on the PC
	Chrome and Firefox on Android
	Opera
	Microsoft
	Apple
	Staying up-to-date

	Summary

	Chapter 2: A More Technical
Introduction to Web-based Real-Time Communication
	Setting up communication
	The general flow
	Connect users
	Start signals
	Find candidates
	Negotiate media sessions
	Start RTCPeerConnection streams

	Using WebSockets
	Other signaling options

	MediaStream API
	RTCPeerConnection API
	The caller's flow
	Register the onicecandidate handler
	Register the onaddstream handler
	Register the message handler
	Use getUserMedia to access the local camera
	The JSEP offer/answer process

	The callee's flow
	Register the onicecandidate handler
	Register the onaddstream handler
	Register the message handler
	Use getUserMedia to access the local camera
	The JSEP offer/answer process

	Where does RTCPeerConnection sit?

	RTCDataChannel API
	Summary

	Chapter 3: Creating a Real-time
Video Call
	Setting up a simple WebRTC video call
	Using a web server to connect two users
	Setting up a signaling server
	Creating an offer in the caller's browser
	Creating an answer in the callee's browser
	Previewing the local video streams
	Establishing peer-to-peer streams
	Stream processing options
	Extending this example into a Chatroulette app
	Summary

	Chapter 4: Creating an Audio Only Call
	Setting up a simple WebRTC audio
only call
	The HTML user interface for audio only calls
	Adding an audio only flow to the signaling server
	Audio stream processing options
	Summary

	Chapter 5: Adding Text-based Chat
	Adding text-based chat to our video
chat app
	The HTML user interface for text-based chat
	Adding JavaScript functions to enable chatting
	Handling text-based chat signals on the server
	Other text message processing options
	Summary

	Chapter 6: Adding File Sharing
	Adding file sharing to our video chat app
	The HTML user interface for file sharing
	Adding JavaScript for enabling file sharing
	Adding files using the <input> element
	Adding support for drag-and-drop
	Adding JavaScript for transferring files via WebSockets
	Handling the file-sharing signals on
the server
	Sending a thumbnail preview before the entire file
	Providing progress updates
	Establishing an RTCDataChannel connection
	Transfering files via an RTCDataChannel connection
	Other file-sharing options
	Summary

	Chapter 7: Example Application 1 – Education and E-learning
	Applying WebRTC for education and e-learning
	Overall application architecture
	Educators
	Students
	WebRTC capable browser
	Existing or new web application
	Signaling server
	TURN server
	Archive server

	Potential issues that may be faced
	Privacy
	Copyright and intellectual property
	Restrictive networks
	Restrictive SOEs
	Outdated student browsers
	Interoperability

	Benefits that can be delivered
	The opportunity for educators
	Summary

	Chapter 8: Example Application 2 –
Team Communication
	Applying WebRTC for team communication
	Overall application architecture
	Managers
	Team members
	WebRTC capable browser
	New and existing web applications
	Signaling server
	TURN server
	Messaging server

	Potential issues that may be faced
	Privacy
	Data security
	Restrictive networks
	Restrictive SOEs
	Interoperability
	Timezones

	Benefits that can be delivered
	The opportunity for managers
	Summary

	Index

