64-Bit NASM Notes

® The transition from 32- to 64-bit architectures is no
joke, as anyone who has wrestled with 32/64 bit
incompatibilities will attest

® We note here some key differences between 32- and
64-bit Intel assembly language programming, both in
general and with NASM specifically

® [t’s a good idea to know, for various operating systems,
how to detect the underlying version/architecture (on
Unix-like platforms, uname -a does the trick)

Invoking 64-Bit NASM

® NASM became 64-bit capable as of version 2.0: invoke
nasm -v to check the version you’re running

® When assembling, make sure to specity a 64-bit format
¢ elf64 for most 64-bit Linux architectures
® macho64 for 64-bit Mac OS X
© win64 for 64-bit Windows

® Given the right object files, no command changes
should be necessary when linking via gcc



Registers

® The primary new capability in 64-bit architectures is
the ability to operate on a quadword’s worth of data in

a single instruction

® Addressable memory, both virtual and physical,
becomes larger by virtue of 64-bit pointers/addresses

® Structurally, most registers are larger (64 bits wide,
duh), and there are more of them (16 general-purpose

registers vs. 8 in 32-bit Intel CPUs)

® Registers eax, ebx, ecx, edx, ebp, esp, esi, and edi are
now 64-bit: rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi

® The new general-purpose registers are r8, r9, r1e, ril,
r12, ri13, r14, and r15 — these are also available in
32-bit flavors r8d—ri15d

® Most of the time, operands that are smaller than 64 bits
zero-extend to 64 bits

® The default operand size is 32 bits — except when
pushing/popping the stack: that’s 64- or 16-bit only

® When in doubt, consult Chapter 3 of the Intel 64 and
TA-32 Architectures Software Developer’s Manual,

Volume 1



Calling Conventions

® Calling conventions are platform-specific, each with
official documentation — typically called the
application binary interface (ABI)

® For Linux, Windows, and Mac OS X respectively, the
specifications can be found at:
o http://www.x86-64.0rg/documentation/abi.pdf
o http://msdn2.microsoft.com/en-gb/library/ms794533.aspx

o http://developer.apple.com/Mac/library/documentation/
DeveloperTools/Conceptual/LowLevelABI

Some calling convention highlights on 64-bit Linux:

® Integer/pointer parameters are placed, in order, in rdi,
rsi, rdx, rcx, r8, and r9

® [loating-point arguments go to the xmm registers

® Variable-argument subroutines require a value in rax
for the number of vector registers used

® Registers rbp, rbx, and r12 through r15 are “caller-
owned” — the called function must preserve them
(either don’t touch them, or save-and-restore via the
stack or other mechanism)

® Integer/pointer return values are placed in rax or
possibly rdx; floating point goes in xmm@ or xmm1



64-Bit Examples

® The following listings include direct conversions of

some of the 32-bit examples in Prof. Toal’s x86assembly

and nasmexamples pages to 64-bit Linux

® Note how, aside from calling conventions and selected

conversion to 64-bit registers, not much has actually

changed — i.e., the main concepts of good assembly

language programming remain the same

® Conversion to other 64-bit Intel operating systems is

left as an interesting and beneficial exercise :)

Of course, we start with helloworld...

global _start

section .text

_start:
; write(1, message, 13)
mov eax, 4 ; system call 4 is write
mov ebx, 1 ; file handle 1 is stdout
mov ecx, message ; address of string to output
mov edx, 13 ; number of bytes
int 80h
; exit(e)
mov eax, 1 ; system call 1 is exit
mov ebx, 0 ; we want return code @
int 80h

message:
db "Hello, World", 10

The version that uses
printf is another story:
compare this to the
32-bit version...

global main
extern printf

section .text
main: mov rdi, message

xor rax, rax

No changes here, since
we use interrupts instead
of subroutines!

; rdi gets the first argument (a pointer)

; printf has a variable number of arguments,

; so rax needs to be set to the number of
; vector registers used...zero in this case

call printf
ret

message:
db 'Hello, World',

10, 0



powers.asm needs a similar makeover since it also uses

printf — note the use of the stack for register preservation

main:

print:

format:

global
extern

section

push

format:

main:

L1:

main
printf

.text

rbx

extern printf
global main

section .data

db '%sd', 10, 0

section .text

mov esi, 1 ;
mov edi, 31 ;
push rsi ;
push rdi

mov rdi, format ;

; second argument, the

xor eax, eax ;
call printf

pop rdi ;
pop rsi

add esi, esi ;
dec edi ;
jne L1

ret

current value
counter

save registers

address of format string
current number, is already in rsi

zero vector registers (eax is OK)
restore registers

double value
keep counting

64-bit fib.asm
must preserve

; we have to save this since we use it

; 32-bit operands will zero-extend to 64 bits

mov
xor
xor
inc

; We need to

ecx, 40

eax, eax
ebx, ebx
ebx

ebx is originally 1

the caller-owned

ecx will countdown from 40 to @ *
eax will hold the current number I’bX I'eglstel'

ebx will hold the next number

call printf, but we are using eax, ebx, and ecx.

; printf may destroy eax and ecx so we will save these before
; the call and restore them afterwards.

push
push

mov
mov
xor
call

pop
pop

mov
mov
add
dec
jnz
pop

ret

db

rax
rex

rdi, format
rsi, rax
eax, eax
printf

rcx
rax

edx, eax
eax, ebx
ebx, edx
ecx
print

rbx

'%10d', 10, 0

; arg 1 is a pointer

count down

32-bit stack operands are not encodable
in 64-bit mode, so we use the "r" names

arg 2 is the current number
no vector registers in use

save the current number

next number is now current

get the new next number

if not done counting, do some more

restore ebx before returning



maxofthree in 32- and 64-bit incarnations...

global maxofthree

section .text
maxofthree:

mov eax, [esp + 4]

mov ecx, [esp + 8]

mov edx, [esp + 12]

cmp eax, ecx

cmovl eax, ecx

cmp eax, edx

cmov'l eax, edx

ret

...both work with the
same C source (why?).

global maxofthree
section .text

maxofthree:
cmp edi, esi ; compare args 1 and 2
cmovl edi, esi ; set edi to the larger
cmp edi, edx ; compare against arg 3
cmovl edi, edx ; set edi to the larger
mov eax, edi ; return value in rax
ret

(note how we can use the
operands right away; return
value remains expected in eax)

#include <stdio.h>
int maxofthree(int, int, int);

int main() {

printf("%sd\n", maxofthree(1, -4, -7));
printf("%d\n", maxofthree(2, -6, 1));
printf("sd\n", maxofthree(2, 3, 1));

printf("sd\n",
printf("sd\n",
printf("sd\n",
return 0;

maxofthree(-2, 4, 3));
maxofthree(2, -6, 5));
maxofthree(2, 4, 6));

64-bit does not change how main is still “just a function”

— but accordingly, command line arguments need to be

processed using the new ABI, as seen in 64-bit echo.asm

global main

extern printf

section .text
main:

mov rcx, rdi

mov rdx, rsi
top:

push rcx

push rdx

mov rdi, format

mov rsi, [rdx]

xor rax, rax

call printf

pop rdx

pop rex

add rdx, 8

dec rex

jnz top

ret
format:

db '%s', 10, 0

argc
argv

save registers that printf wastes

the format string
the argument string to display
zero vector registers

restore registers printf used

point to next argument
count down
if not done counting keep going



