
64-Bit NASM Notes

• The transition from 32- to 64-bit architectures is no
joke, as anyone who has wrestled with 32/64 bit
incompatibilities will attest

•We note here some key differences between 32- and
64-bit Intel assembly language programming, both in
general and with NASM specifically

• It’s a good idea to know, for various operating systems,
how to detect the underlying version/architecture (on
Unix-like platforms, uname -a does the trick)

Invoking 64-Bit NASM
• NASM became 64-bit capable as of version 2.0: invoke

nasm -v to check the version you’re running

•When assembling, make sure to specify a 64-bit format

elf64 for most 64-bit Linux architectures

macho64 for 64-bit Mac OS X

win64 for 64-bit Windows

• Given the right object files, no command changes
should be necessary when linking via gcc

Registers

• The primary new capability in 64-bit architectures is
the ability to operate on a quadword’s worth of data in
a single instruction

• Addressable memory, both virtual and physical,
becomes larger by virtue of 64-bit pointers/addresses

• Structurally, most registers are larger (64 bits wide,
duh), and there are more of them (16 general-purpose
registers vs. 8 in 32-bit Intel CPUs)

• Registers eax, ebx, ecx, edx, ebp, esp, esi, and edi are
now 64-bit: rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi

• The new general-purpose registers are r8, r9, r10, r11,
r12, r13, r14, and r15 — these are also available in
32-bit flavors r8d–r15d

•Most of the time, operands that are smaller than 64 bits
zero-extend to 64 bits

• The default operand size is 32 bits — except when
pushing/popping the stack: that’s 64- or 16-bit only

•When in doubt, consult Chapter 3 of the Intel 64 and
IA-32 Architectures Software Developer’s Manual,
Volume 1

Calling Conventions

• Calling conventions are platform-specific, each with
official documentation — typically called the
application binary interface (ABI)

• For Linux, Windows, and Mac OS X respectively, the
specifications can be found at:
http://www.x86-64.org/documentation/abi.pdf

http://msdn2.microsoft.com/en-gb/library/ms794533.aspx

http://developer.apple.com/Mac/library/documentation/
DeveloperTools/Conceptual/LowLevelABI

Some calling convention highlights on 64-bit Linux:

• Integer/pointer parameters are placed, in order, in rdi,
rsi, rdx, rcx, r8, and r9

• Floating-point arguments go to the xmm registers

• Variable-argument subroutines require a value in rax
for the number of vector registers used

• Registers rbp, rbx, and r12 through r15 are “caller-
owned” — the called function must preserve them
(either don’t touch them, or save-and-restore via the
stack or other mechanism)

• Integer/pointer return values are placed in rax or
possibly rdx; floating point goes in xmm0 or xmm1

64-Bit Examples

• The following listings include direct conversions of
some of the 32-bit examples in Prof. Toal’s x86assembly
and nasmexamples pages to 64-bit Linux

• Note how, aside from calling conventions and selected
conversion to 64-bit registers, not much has actually
changed — i.e., the main concepts of good assembly
language programming remain the same

• Conversion to other 64-bit Intel operating systems is
left as an interesting and beneficial exercise :)

 global main
 extern printf

 section .text

main: mov rdi, message ; rdi gets the first argument (a pointer)

 xor rax, rax ; printf has a variable number of arguments,
 ; so rax needs to be set to the number of
 ; vector registers used...zero in this case
 call printf
 ret

message:
 db 'Hello, World', 10, 0

Of course, we start with helloworld…
 global _start

 section .text

_start:
 ; write(1, message, 13)
 mov eax, 4 ; system call 4 is write
 mov ebx, 1 ; file handle 1 is stdout
 mov ecx, message ; address of string to output
 mov edx, 13 ; number of bytes
 int 80h

 ; exit(0)
 mov eax, 1 ; system call 1 is exit
 mov ebx, 0 ; we want return code 0
 int 80h

message:
 db "Hello, World", 10

No changes here, since
we use interrupts instead
of subroutines!

The version that uses
printf is another story:
compare this to the
32-bit version…

powers.asm needs a similar makeover since it also uses
printf — note the use of the stack for register preservation

 extern printf
 global main

 section .data

format:
 db '%d', 10, 0

 section .text

main:
 mov esi, 1 ; current value
 mov edi, 31 ; counter

L1:
 push rsi ; save registers
 push rdi

 mov rdi, format ; address of format string

 ; second argument, the current number, is already in rsi

 xor eax, eax ; zero vector registers (eax is OK)
 call printf

 pop rdi ; restore registers
 pop rsi

 add esi, esi ; double value
 dec edi ; keep counting
 jne L1

 ret

 global main
 extern printf

 section .text

main:
 push rbx ; we have to save this since we use it

 ; 32-bit operands will zero-extend to 64 bits

 mov ecx, 40 ; ecx will countdown from 40 to 0
 xor eax, eax ; eax will hold the current number
 xor ebx, ebx ; ebx will hold the next number
 inc ebx ; ebx is originally 1

print:
 ; We need to call printf, but we are using eax, ebx, and ecx.
 ; printf may destroy eax and ecx so we will save these before
 ; the call and restore them afterwards.

 push rax ; 32-bit stack operands are not encodable
 push rcx ; in 64-bit mode, so we use the "r" names

 mov rdi, format ; arg 1 is a pointer
 mov rsi, rax ; arg 2 is the current number
 xor eax, eax ; no vector registers in use
 call printf

 pop rcx
 pop rax

 mov edx, eax ; save the current number
 mov eax, ebx ; next number is now current
 add ebx, edx ; get the new next number
 dec ecx ; count down
 jnz print ; if not done counting, do some more

 pop rbx ; restore ebx before returning

 ret

format:
 db '%10d', 10, 0

64-bit fib.asm
must preserve
the caller-owned
rbx register

 global maxofthree

 section .text

maxofthree:
 mov eax, [esp + 4]
 mov ecx, [esp + 8]
 mov edx, [esp + 12]
 cmp eax, ecx
 cmovl eax, ecx
 cmp eax, edx
 cmovl eax, edx
 ret

#include <stdio.h>

int maxofthree(int, int, int);

int main() {
 printf("%d\n", maxofthree(1, -4, -7));
 printf("%d\n", maxofthree(2, -6, 1));
 printf("%d\n", maxofthree(2, 3, 1));
 printf("%d\n", maxofthree(-2, 4, 3));
 printf("%d\n", maxofthree(2, -6, 5));
 printf("%d\n", maxofthree(2, 4, 6));
 return 0;
}

 global maxofthree

 section .text

maxofthree:
 cmp edi, esi ; compare args 1 and 2
 cmovl edi, esi ; set edi to the larger
 cmp edi, edx ; compare against arg 3
 cmovl edi, edx ; set edi to the larger
 mov eax, edi ; return value in rax
 ret

maxofthree in 32- and 64-bit incarnations…

…both work with the
same C source (why?).

(note how we can use the
operands right away; return
value remains expected in eax)

64-bit does not change how main is still “just a function”
— but accordingly, command line arguments need to be
processed using the new ABI, as seen in 64-bit echo.asm

 global main
 extern printf

 section .text

main:
 mov rcx, rdi ; argc
 mov rdx, rsi ; argv

top:
 push rcx ; save registers that printf wastes
 push rdx

 mov rdi, format ; the format string
 mov rsi, [rdx] ; the argument string to display
 xor rax, rax ; zero vector registers
 call printf

 pop rdx ; restore registers printf used
 pop rcx

 add rdx, 8 ; point to next argument
 dec rcx ; count down
 jnz top ; if not done counting keep going

 ret

format:
 db '%s', 10, 0

