

Preface

BIOS DISASSEMBLY NINJUTSU UNCOVERED – THE BOOK

For many years, there has been a myth among computer enthusiasts and practitioners that

PC BIOS (Basic Input Output System) modification is a kind of black art and only a handful of
people can do it or only the motherboard vendor can carry out such a task. On the contrary, this
book will prove that with the right tools and approach, anyone can understand and modify the
BIOS to suit their needs without the existence of its source code. It can be achieved by using a
systematic approach to BIOS reverse engineering and modification. An advanced level of this
modification technique is injecting a custom code to the BIOS binary.

There are many reasons to carry out BIOS reverse engineering and modification, from the
fun of doing it to achieve higher clock speed in overclocking scenario, patching certain bug,
injecting a custom security code into the BIOS, up to commercial interest in the embedded x86
BIOS market. The emergence of embedded x86 platform as consumer electronic products such as
TV set-top boxes, telecom-related appliances and embedded x86 kiosks have raised the interest in
BIOS reverse engineering and modification. In the coming years, these techniques will become
even more important as the state of the art bus protocols have delegate a lot of their initialization
task to the firmware, i.e. the BIOS. Thus, by understanding the techniques, one can dig the
relevant firmware codes and understand the implementation of those protocols within the BIOS
binary.

The main purpose of the BIOS is to initialize the system into execution environment
suitable for the operating system. This task is getting more complex over the years, since x86
hardware evolves quite significantly. It’s one of the most dynamic computing platform on earth.
Introduction of new chipsets happens once in 3 or at least 6 month. This event introduces a new
code base for the silicon support routine within the BIOS. Nevertheless, the overall architecture of
the BIOS is changing very slowly and the basic principle of the code inside the BIOS is preserved
over generations of its code. However, there has been a quite significant change in the BIOS scene
in the last few years, with the introduction of EFI (extensible Firmware Interface) by several major
hardware vendors and with the growth in OpenBIOS project. With these advances in BIOS
technology, it’s even getting more important to know systematically what lays within the BIOS.

In this book, the term BIOS has a much broader meaning than only motherboard BIOS,
which is familiar to most of the reader. It also means the expansion ROM. The latter term is the
official term used to refer to the firmware in the expansion cards within the PC, be it ISA, PCI or
PCI Express.

So, what can you expect after reading this book? Understanding the BIOS will open a
new frontier. You will be able to grasp how exactly the PC hardware works in its lowest level.
Understanding contemporary BIOS will reveal the implementation of the latest bus protocol
technology, i.e. HyperTransport and PCI-Express. In the software engineering front, you will be
able to appreciate the application of compression technology in the BIOS. The most important of
all, you will be able to carry out reverse engineering using advanced techniques and tools. You
will be able to use the powerful IDA Pro disassembler efficiently. Some reader with advanced
knowledge in hardware and software might even want to “borrow” some of the algorithm within
the BIOS for their own purposes. In short, you will be on the same level as other BIOS code-
diggers.

This book also presents a generic approach to PCI expansion ROM development using
the widely available GNU tools. There will be no more myth in the BIOS and everyone will be
able to learn from this state-of-the-art software technology for their own benefits.

THE AUDIENCE

This book is primarily oriented toward system programmers and computer security
experts. In addition, electronic engineers, pc technicians and computer enthusiasts can also benefit
a lot from this book. Furthermore, due to heavy explanation of applied computer architecture (x86

architecture) and compression algorithm, computer science students might also find it useful.
However, nothing prevents any people who is curious about BIOS technology to read this book
and get benefit from it.

Some prerequisite knowledge is needed to fully understand this book. It is not mandatory,
but it will be very difficult to grasp some of the concepts without it. The most important
knowledge is the understanding of x86 assembly language. Explanation of the disassembled code
resulting from the BIOS binary and also the sample BIOS patches are presented in x86 assembly
language. They are scattered throughout the book. Thus, it’s vital to know x86 assembly language,
even with very modest familiarity. It’s also assumed that the reader have some familiarity with C
programming language. The chapter that dwell on expansion ROM development along with the
introductory chapter in BIOS related software development uses C language heavily for the
example code. C is also used heavily in the section that covers IDA Pro scripts and plugin
development. IDA Pro scripts have many similarities with C programming language. Familiarity
with Windows Application Programming Interface (Win32API) is not a requirement, but is very
useful to grasp the concept in the Optional section of chapter 3 that covers IDA Pro plugin
development.

THE ORGANIZATION

The first part of the book lays the foundation knowledge to do BIOS reverse engineering and
Expansion ROM development. In this part, the reader is introduced with:
a. Various bus protocols in use nowadays within the x86 platform, i.e. PCI, HyperTransport and

PCI-Express. The focus is toward the relationship between BIOS code execution and the
implementation of protocols.

b. Reverse engineering tools and techniques needed to carry out the tasks in later chapter, mostly
introduction to IDA Pro disassembler along with its advanced techniques.

c. Crash course on advanced compiler tricks needed to develop firmware. The emphasis is in
using GNU C compiler to develop a firmware framework.

The second part of this book reveals the details of motherboard BIOS reverse engineering and

modification. This includes indepth coverage of BIOS file structure, algorithms used within the
BIOS, explanation of various BIOS specific tools from its corresponding vendor and explanation
of tricks to perform BIOS modification.

The third part of the book deals with the development of PCI expansion ROM. In this part,

PCI Expansion ROM structure is explained thoroughly. Then, a systematic PCI expansion ROM
development with GNU tools is presented.

The fourth part of the book deals heavily with the security concerns within the BIOS. This

part is biased toward possible implementation of rootkits within the BIOS and possible
exploitation scenario that might be used by an attacker by exploiting the BIOS flaw. Computer
security experts will find a lot of important information in this part. This part is the central theme
in this book. It’s presented to improve the awareness against malicious code that can be injected
into BIOS.

The fifth part of the book deals with the application of BIOS technology outside of its

traditional space, i.e. the PC. In this chapter, the reader is presented with various application of the
BIOS technology in the emerging embedded x86 platform. In the end of this part, further
application of the technology presented in this book is explained briefly. Some explanation
regarding the OpenBIOS and Extensible Firmware Interface (EFI) is also presented.

SOFTWARE TOOLS COMPATIBILITY

This book mainly deals with reverse engineering tools running in windows operating system.
However, in chapters that deal with PCI Expansion ROM development, an x86 Linux installation

is needed. This is due to the inherent problems that occurred with the windows port of the GNU
tools when trying to generate a flat binary file from ELF file format.

Proposed Table of Contents

Preface i
Table of contents iv

Part I The Basics

Chapter 1 Introducing PC BIOS Technology 1
1.1. Motherboard BIOS 1
1.2. Expansion ROM 7
1.3. Other PC Firmware 9
1.4. Bus Protocols and Chipset Technology 9

1.4.1. System-Wide Addressing 9
1.4.2. PCI Bus Protocol 11
1.4.3. Propietary Inter-Chipset Protocol Technology 15
1.4.4. PCI-Express Bus Protocol 17
1.4.5. HyperTransport Bus Protocol 18

Chapter 2 Preliminary Reverse Code Engineering 19

2.1. Binary Scanning 19
2.2. Introducing IDA Pro 22
2.3. IDA Pro Scripting and Key Bindings 28
2.4. IDA Pro Plug-in Development (Optional) 37

Chapter 3 Preliminary BIOS-Related Software Development 48

3.1. BIOS-Related Software Development with Pure Assembler 48
3.2. BIOS-Related Software Development with GCC 53

Part II Motherboard BIOS Reverse Engineering

Chapter 4 Getting Acquainted with the System 61
4.1. Hardware Peculiarities 61
4.2. BIOS Binary Structure 74
4.3. Software Peculiarities 77
4.4. BIOS Disassembling with IDA Pro 81

Chapter 5 BIOS Reverse Engineering 83

5.1. Award BIOS 83
5.1.1. Award BIOS File Structure 83
5.1.2. Award BIOS Tools 85
5.1.3. Award Bootblock BIOS Reverse Engineering 86
5.1.4. Award System BIOS Reverse Engineering 99

5.2. AMI BIOS 113
5.2.1. AMI BIOS File Structure 113
5.2.2. AMI BIOS Tools 115
5.2.3. AMI Bootblock BIOS Reverse Engineering 116
5.2.4. AMI System BIOS Reverse Engineering 129

Chapter 6 BIOS Modification 173

6.1. Tools of the Trade 173
6.2. Code Injection 174
6.3. Other Modifications 184

Part III Expansion ROM

Chapter 7 PCI Expansion ROM Software Development 195

7.1. Plug and Play BIOS and Expansion ROM Architecture 195
7.1.1. Power-On Self-Test Execution Flow 196
7.1.2. Expansion ROM Support 198

7.2. PCI Expansion ROM Peculiarities 200
7.3. Implementation Sample 200

7.3.1. Hardware Testbed 200
7.3.2. Software Development Tool 201
7.3.3. Expansion ROM Source Code 202

7.3.3.1. Core PCI PnP Expansion ROM Source Code 202
7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 211

7.2. Building the Sample 216
7.3. Testing the Sample 217
7.4. Potential Bug and Its Workaround 218

Chapter 8 PCI Expansion ROM Reverse Engineering 219

a. Binary Architecture 219
b. Disassembling the Main Code 202

Part IV BIOS Ninjutsu

Chapter 9 Accessing BIOS within the Operating System 208
5.1. General Access Mechanism 208
5.2. Accessing Motherboard BIOS Contents in Windows 217
5.3. Accessing Expansion ROM Contents in Windows 226
5.4. Accessing Motherboard BIOS Contents in Linux 235
5.5. Accessing Expansion ROM Contents in Linux 244

Chapter 10 Low-Level Remote Server Management 263

- DMI and SMBIOS Protocols 263
- Remote Server Management Code Implementation 275

Chapter 11 BIOS Security Measures 285

15.1.1. Password Protection Code 287
15.1.2. BIOS Code Integrity Checks 308
15.1.3. Remote Server Management Security Measures 327

Chapter 12 BIOS Rootkits Engineering 346

a. Looking Back to BIOS Exploitation History 346
b. DMI and SMBIOS Protocol Flaws 355
c. DMI and SMBIOS Protocol Exploitation 364

Chapter 13 BIOS Defense Techniques 374

1. Prevention Methods 374
2. Recognizing Compromised Systems 382
3. Healing Compromised Systems 392

Part V Other Applications of BIOS Technology

Chapter 14 Embedded x86 BIOS Technology 402
Embedded x86 BIOS Architecture 402
Embedded x86 BIOS Implementation Samples 405

i.TV Set-Top Boxes 408
ii.Routers 412

iii.Kiosks 415

Embedded x86 BIOS Exploitation 418

Chapter 15 What's Next? 428
• The Future of BIOS 428

o Extensible Firmware Interface 428
o BIOS Vendors Roadmap 430

• Ubiquitous Computing and BIOS 431
• The Future of the BIOS-Related Security Threat 434

Typographical Conventions

In this book, the courier font is used to indicate that text is one of the following:

1. Source code
2. Numeric values
3. Configuration file entries
4. Directory/paths in the file system
5. Datasheet snippets
6. CPU registers

Hexadecimal values are indicated by prefixing them with a 0x or by appending them with h. For
example, the integer value 4691 will, in hexadecimal, look like 0x1253 or 1253h. Hexadecimal values
larger than four digits will be accompanied by underscore every four consecutive hexadecimal digits to
ease reading the value, as in 0xFFFF_0000 and 0xFD_FF00_0000.

Binary values are indicated by appending them with b. For example, the integer value 5 will, in binary,
look like 101b.

Words will appear in the italic font, in this book, for following reasons:

1. When defining a new term
2. For emphasis

Words will appear in the bold font, in this book, for the following reasons:

3. When describing a menu within an application software in Windows
4. A key press, e.g. CAPSLOCK, G, Shift, C, etc.
5. For emphasis

Part I The Basics

Chapter 1 PC BIOS Technology

PREVIEW

 This chapter is devoted to explaining the parts of a PC that make up the term basic
input/output system (BIOS). These are not only motherboard BIOS, which most readers
might already be accustomed to, but also expansion read-only memories (ROMs). The
BIOS is one of the key parts of a PC. BIOS provides the necessary execution environment
for the operating system. The approach that I take to explain this theme follows the logic of
the execution of BIOS subsystems inside the PC. It is one of the fastest ways to gain a
systematic understanding of BIOS technology. In this journey, you will encounter answers
to common questions: Why is it there? Why does it have to be accomplished that way? The
discussion starts with the most important BIOS, motherboard BIOS. On top of that, this
chapter explains contemporary bus protocol technology, i.e., PCI Express, HyperTransport,
and peripheral component interconnect (PCI). A profound knowledge of bus protocol
technology is needed to be able to understand most contemporary BIOS code.

1.1. Motherboard BIOS

 Motherboard BIOS is the most widely known BIOS from all kinds of BIOS. This
term refers to the machine code that resides in a dedicated ROM chip on the motherboard.
Today, most of these ROM chips are the members of flash-ROM family. This name refers
to a ROM chip programmed1 electrically in a short interval, i.e., the programming takes
only a couple of seconds.
 There is a common misconception between the BIOS chip and the complementary
metal oxide semiconductor (CMOS) chip. The former is the chip that's used to store the
BIOS code, i.e., the machine code that will be executed when the processor executes the
BIOS, and the latter is the chip that's used to store the BIOS parameters, i.e., the parameters
that someone sets when entering the BIOS, such as the computer date and the RAM timing.
Actually, CMOS chip is a misleading name. It is true that the chip is built upon CMOS
technology. However, the purpose of the chip is to store BIOS information with the help of
a dedicated battery. In that respect, it should’ve been called non-volatile random access
memory (NVRAM) chip in order to represent the nature and purpose of the chip.
Nonetheless, the CMOS chip term is used widely among PC users and hardware vendors.

1 Programmed in this context means being erased or written into.

1

Figure 1.1 Motherboard with a DIP-type BIOS chip

Figure 1.2 Motherboard with a PLCC-type BIOS chip

2

 The widely employed chip packaging for BIOS ROM is PLCC2 (fig. 1.1) or DIP3
(fig. 1.2). Modern-day motherboards mostly use the PLCC package type. The top marking
on the BIOS chip often can be seen only after the BIOS vendor sticker, e.g., Award BIOS
or AMI BIOS, is removed. The commonly used format is shown in figure 1.3.

Figure 1.3 BIOS chip marking

1. The vendor_name is the name of the chip vendor, such as Winbond, SST, or
Atmel.

2. The chip_number is the part number of the chip. Sometimes this part number
includes the access time specification of the corresponding chip.

3. The batch_number is the batch number of the chip. It is used to mark the batch
in which the chip belonged when it came out of the factory. Some chips might
have no batch number.

 This chip marking is best explained by using an example (fig. 1.4).

2 Plastic lead chip carrier, one of the chip packaging technologies.
3 Dual inline package, one of the chip packaging technologies.

3

Figure 1.4 BIOS chip marking example

 In the marking in figure 1.4, the AT prefix means "made by Atmel," the part
number is 29C020C, and 90PC means the chip has 90 ns of access time. Detailed
information can be found by downloading and reading the datasheet of the chip from the
vendor's website. The only information needed to obtain the datasheet is the part number.
 It is important to understand the BIOS chip marking, especially the part number
and the access time. The access time information is always specified in the corresponding
chip datasheet. This information is needed when you intend to back up your BIOS chip
with a chip from a different vendor. The access time and voltage level of both chips must
match. Otherwise, the backup process will fail. The backup process can be carried out by
hot swapping or by using specialized tools such as BIOS Saviour. Hot swapping is a
dangerous procedure and is not recommended. Hot swapping can destroy the motherboard
and possibly another component attached to the motherboard if it's not carried out carefully.
However, if you are adventurous, you might want to try it in an old motherboard. The hot
swapping steps are as follows:

1. Prepare a BIOS chip with the same type as the one in the current motherboard to
be used as the target, i.e., the new chip that will be flashed with the BIOS in the
current motherboard. This chip will act as the BIOS backup chip. Remove any
sticker that keeps you from seeing the type of your motherboard BIOS chip
(usually the Award BIOS or AMI BIOS logo). This will void your motherboard
warranty, so proceed at your own risk. The same type of chip here means a chip
that has the same part number as the current chip. If one can't be found, you can
try a compatible chip, i.e., a chip that has the same capacity, voltage level, and
timing characteristic. Note that finding a compatible chip is not too hard. Often,
the vendor of flash-ROMs provides flash-ROM cross-reference documentation in
their website. This documentation lists the compatible flash-ROM from other
vendors. Another way to find a compatible chip is to download datasheets from
two different vendors with similar part numbers and compare their properties
according to both datasheets. If the capacity, voltage level, and access time match,
then the chip is compatible. For example, ATMEL AT29C020C is compatible
with WINBOND W29C020C.

4

2. Prepare the BIOS flashing software in a diskette or in a file allocation table (FAT)
formatted hard disk drive (HDD) partition. This software will be used to save
BIOS binary from the original BIOS chip and to flash the binary into the backup
chip. The BIOS flashing software is provided by the motherboard maker from its
website, or sometimes it's shipped with the motherboard driver CD.

3. Power off the system and unplug it from electrical source. Loosen the original
BIOS chip from the motherboard. It can be accomplished by first removing the
chip using a screwdriver or IC extractor from the motherboard and then
reattaching it firmly. Ensure that the chip is not attached too tightly to the
motherboard and it can be removed by hand later. Also, ensure that electrical
contact between the IC and the motherboard is strong enough so that the system
will be able to boot.

4. Boot the system to the real-mode disk operating system (DOS). Beware that some
motherboards may have a BIOS flash protection option in their BIOS setup. It has
to be disabled before proceeding to the next step.

5. Run the BIOS flashing software and follow its on-screen direction to save the
original BIOS binary to a FAT partition in the HDD or to a diskette.

6. After saving the original BIOS binary, carefully release the original BIOS chip
from the motherboard. Note that this procedure is carried out with the computer
still running in real-mode DOS.

7. Attach the backup chip to the motherboard firmly. Ensure that the electrical
contact between the chip and the motherboard is strong enough.

8. Use the BIOS flashing software to flash the saved BIOS binary from the HDD
partition or the diskette to the backup BIOS chip.

9. Reboot the system and see whether it boots successfully. If it does, the hot
swapping has been successful.

 Hot swapping is not as dangerous as you might think for an experienced hardware
hacker. Nevertheless, use of a specialized device such as BIOS Saviour for BIOS backup is
bulletproof.
 Anyway, you might ask, why would the motherboard need a BIOS? There are
several answers to this seemingly simple question. First, system buses, such as PCI, PCI-X,
PCI Express, and HyperTransport consume memory address space and input/output (I/O)
address space. Devices that reside in these buses need to be initialized to a certain address
range within the system memory or I/O address space before being used. Usually, the
memory address ranges used by these devices are located above the address range used for
system random access memory (RAM) addressing. The addressing scheme depends on the
motherboard chipset. Hence, you must consult the chipset datasheet(s) and the
corresponding bus protocol for details of the addressing mechanism. I will explain this
issue in a later chapter that dwells on the bus protocol.

5

 Second, some components within the PC, such as RAM and the central processing
unit (CPU) are running at the "undefined" clock speed4 just after the system is powered up.
They must be initialized to some predefined clock speed. This is where the BIOS comes
into play; it initializes the clock speed of those components.
 The bus protocol influences the way the code inside the BIOS chip is executed, be
it motherboard BIOS or other kinds of BIOS. Section 1.4 will delve into bus protocol
fundamentals to clean up the issue.

1.2. Expansion ROM

 Expansion ROM5 is a kind of BIOS that's embedded inside a ROM chip mounted
on an add-in card. Its purpose is to initialize the board in which it's soldered or socketed
before operating system execution. Sometimes it is mounted into an old ISA add-in card, in
which case it's called ISA expansion ROM. If it is mounted to a PCI add-in card, it's called
PCI expansion ROM. In most cases, PCI or ISA expansion ROM is implanted inside an
erasable or electrically erasable programmable read-only memory chip or a flash-ROM chip
in the PCI or ISA add-in card. In certain cases, it's implemented as the motherboard BIOS
component. Specifically, this is because of motherboard design that incorporates some
onboard PCI chip, such as a redundant array of independent disks (RAID) controller, SCSI
controller, or serial advanced technology attachment (ATA) controller. Note that expansion
ROM implemented as a motherboard BIOS component is no different from expansion
ROM implemented in a PCI or ISA add-in card. In most cases, the vendor of the
corresponding PCI chip that needs chip-specific initialization provides expansion ROM
binary. You are going to learn the process of creating such binary in part 3 of this book.

4 "Undefined" clock speed in this context means the power-on default clock speed.
5 Expansion ROM is also called as option ROM in some articles and documentations. The terms are
interchangeable.

6

Figure 1.5 PCI expansion ROM chip

 Actually, there is some complication regarding PCI expansion ROM execution
compared with ISA expansion ROM execution. ISA expansion ROM is executed in place,6
and PCI expansion ROM is always copied to RAM and executed from there. This issue will
be explained in depth in the chapter that covers the PCI expansion ROM.

1.3. Other Firmware within the PC

 It must be noted that motherboard and add-in cards are not the only ones that
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware is used
to control the physical devices within those drives and to communicate with the rest of the
system. However, those kinds of firmware are not considered in this book. They are
mentioned here just to ensure that you are aware of their existence.

1.4. Bus Protocols Fundamentals

 This section explains bus protocols used in a PC motherboard, namely PCI, PCI
Express, and HyperTransport. These protocols are tightly coupled with the BIOS. In fact,
the BIOS is part of the bus protocol implementation. The BIOS handles the initialization of
the addressing scheme employed in these buses. The BIOS handles another protocol-
specific initialization. This section is not a thorough explanation of the bus protocols

6 Executed in place means executed from the ROM chip in the expansion card.

7

themselves; it is biased toward BIOS implementation-related issues, particularly the
programming model employed in the respective bus protocol.
 First, it delves into the system-wide addressing scheme in contemporary systems.
This role is fulfilled by the chipset. Thus, a specific implementation is used as an example.

1.4.1. System-wide Addressing

 If you have never been playing around with system-level programming, you might
find it hard to understand the organization of the overall physical memory address space in
x86 architecture. It must be noted that RAM is not the only hardware that uses the
processor memory address space; some other hardware is also mapped to the processor
memory address space. This memory-mapped hardware includes PCI devices, PCI Express
devices, HyperTransport devices, the advanced programmable interrupt controller (APIC),
the video graphics array (VGA) device, and the BIOS ROM chip. It's the responsibility of
the chipset to divide the x86 processor memory address space for RAM and other memory-
mapped hardware devices. Among the motherboard chipsets, the northbridge is responsible
for this system address-space organization, particularly its memory controller part. The
memory controller decides where to forward a read or write request from the CPU to a
certain memory address. This operation can be forwarded to RAM, memory-mapped VGA
RAM, or the southbridge; it depends on the system configuration. If the northbridge is
embedded inside the CPU itself, like in the AMD Athlon 64/Opteron architecture, the CPU
decides where to forward these requests.
 The influence of the bus protocol employed in x86 architecture to the system
address map is enormous. To appreciate this, analyze a sample implementation in the form
of a PCI Express chipset, Intel 955X-ICH7(R). This chipset is used with Intel Pentium 4
processors that support IA-32E and are capable of addressing RAM above the 4-GB limit.

8

Figure 1.6 Intel 955X-ICH7(R) system address map

 Figure 1.6 shows that memory address space above the physical RAM is used for
PCI devices, APIC, and BIOS flash-ROM. In addition, there are two areas of physical
memory address space used by the RAM, i.e., below and above the 4-GB limit. This
division is the result of the 4-GB limit of 32-bit addressing mode of x86 processors. Note
that PCI Express devices are mapped to the same memory address range as PCI devices but
they can't overlap each other. Several hundred kilobytes of the RAM address range is not
addressable because its address space is consumed by other memory-mapped hardware
devices, though this particular area may be available through system management mode
(SMM). This is because of the need to maintain compatibility with DOS. In the DOS days,
several areas of memory below 1 MB (10_0000h) were used to map hardware devices,
such as the video card buffer and BIOS ROM. The "BARs" mentioned in figure 1.6 are an
abbreviation for base address registers. These will be explained in a later section.
 The system address map in figure 1.6 shows that the BIOS chip is mapped to two
different address ranges, i.e., 4GB_minus_BIOS_chip_size to 4 GB and E_0000h to
F_FFFFh. The former BIOS flash-ROM address range varies from chipset to chipset,
depending on the maximum BIOS chip size supported by the chipset. This holds true for
every chipset and must be taken into account when I delve into the BIOS code in later
chapters. The latter address range mapping is supported in most contemporary chipsets.
This 128-KB range (E_0000h–F_FFFFh) is an alias to the topmost 128-KB address range

9

in the BIOS chip. Chipsets based on a different bus protocol, such as HyperTransport or the
older chipsets based on PCI, also employ mapping of physical memory address space
similar to that described here. It has to be done that way to maintain compatibility with the
current BIOS code from different vendors and to maintain compatibility with legacy
software. Actually, there are cost savings in employing this addressing scheme; the base
code for the BIOS from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed
or only needs to undergo minor changes.

1.4.2. PCI Bus Protocol

 The PCI bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed
address and data lines. The bus is intended for use as an interconnect mechanism between
highly integrated peripheral controller components, peripheral add-in cards, and processor
or memory systems. It is the most widely used bus in PC motherboard design since the
mid-1990s. It's only recently that this bus system has been replaced by newer serial bus
protocols, i.e., PCI Express and HyperTransport. The PCI Special Interest Group is the
board that maintains the official PCI bus standard.
 PCI supports up to 256 buses in one system, with every bus supporting up to 32
devices and every device supporting up to eight functions. The PCI protocol defines the so-
called PCI-to-PCI bridges that connect two different PCI bus segments. This bridge
forwards PCI transactions from one bus to the neighboring bus segment. Apart from
extending the bus topology, the presence of PCI-to-PCI bridges is needed due to an
electrical loading issue. The PCI protocol uses reflected-wave signaling that only enables
around 10 onboard devices per bus or only five PCI connectors per bus. PCI connectors are
used for PCI expansion cards, and they account for two electrical loads, one for the
connector itself and one for the expansion card inserted into the connector.
 The most important issue to know in PCI bus protocol with regard to BIOS
technology is its programming model and configuration mechanism. This theme is covered
in chapter 6 of the official PCI specification, versions 2.3 and 3.0. It will be presented with
in-depth coverage in this section.
 The PCI bus configuration mechanism is accomplished by defining 256-byte
registers called configuration space in each logical PCI device function. Note that each
physical PCI device can contain more than one logical PCI device and each logical device
can contain more than one function. The PCI bus protocol doesn't specify a single
mechanism used to access this configuration space for PCI devices in all processor
architectures; on the contrary, each processor architecture has its own mechanism to access
the PCI configuration space. Some processor architectures map this configuration space
into their memory address space (memory mapped), and others map this configuration
space into their I/O address space (I/O mapped). Figure 1.7 shows a typical PCI
configuration space organization for PCI devices that's not a PCI-to-PCI bridge.

10

Figure 1.7 PCI configuration space registers for a non-PCI-to-PCI bridge device

 The PCI configuration space in x86 architecture is mapped into the processor I/O
address space. The I/O port addresses 0xCF8–0xCFB act as the configuration address port
and I/O ports 0xCFC–0xCFF act as the configuration data port. These ports are used to
configure the corresponding PCI chip, i.e., reading or writing the PCI chip configuration
register values. It must be noted that the motherboard chipset itself, be it northbridge or
southbridge, is a PCI chip. Thus, the PCI configuration mechanism is employed to
configure these chips. In most cases, these chips are a combination of several PCI functions
or devices; the northbridge contains the host bridge, PCI–PCI bridge (PCI–accelerated
graphics port bridge), etc., and the southbridge contains the integrated drive electronics
controller, low pin count (LPC) bridge, etc. The PCI–PCI bridge is defined to address the
electrical loading issue that plagues the physical PCI bus. In addition, recent bus
architecture uses it as a logical means to connect different chips, meaning it's used to travel
the bus topology and to configure the overall bus system. The typical configuration space
register for a PCI–PCI bridge is shown in figure 1.8

11

Figure 1.8 PCI configuration space registers for a PCI-to-PCI bridge device

 Since the PCI bus is a 32-bit bus, communicating using this bus should be in 32-bit
addressing mode. Writing or reading to this bus will require 32-bit addresses. Note that a
64-bit PCI bus is implemented by using dual address cycle, i.e., two address cycles are
needed to access the address space of 64-bit PCI device(s). Communicating with the PCI
configuration space in x86 is accomplished with the following algorithm (from the host or
CPU point of view):

1. Write the target bus number, device number, function number, and offset or
register number to the configuration address port (I/O ports 0xCF8–0xCFB) and set
the enable bit in it to one. In plain English: Write the address of the register that
will be read or written into the PCI address port.

2. Perform a 1-byte, 2-byte, or 4-byte I/O read from or write to the configuration data
port (I/O port 0xCFC–0xCFF). In plain English: Read or write the data into the PCI
data port.

 With the preceding algorithm, you'll need an x86 assembly code snippet that
shows how to use those configuration ports.

Listing 1.1 PCI Configuration Read and Write Routine Sample

; Mnemonic is in MASM syntax
 pushad ; Save all contents of general-purpose registers.

12

 mov eax,80000064h ; Put the address of the PCI chip register to be
 ; accessed in eax (offset 64 device 00:00:00 or
 ; host bridge/northbridge).

 mov dx,0CF8h ; Put the address port in dx. Since this is PCI,
 ; use 0xCF8 as the port to open access to
 ; the device.
 out dx,eax ; Send the PCI address port to the I/O space of
 ; the processor.

 mov dx,0CFCh ; Put the data port in dx. Since this is PCI,
 ; use 0xCFC as the data port to communicate with
 ; the device.

 in eax,dx ; Put the data read from the device in eax.

 or eax, 00020202 ; Modify the data (this is only an example; don't
 ; try this in your machine, it may hang or
 ; even destroy your machine).

 out dx,eax ; Send it back

 ; ... ; your routine here.

 popad ; Restore all the saved register.

 ret ; Return to the calling procedure.

 This code snippet is a procedure that I injected into the BIOS of a motherboard
based on a VIA 693A-596B PCI chipset to patch its memory controller configuration a few
years ago. The code is clear enough; in line 1 the current data in the processor's general-
purpose registers were saved. Then comes the crucial part, as I said earlier: PCI is a 32-bit
bus system; hence, you have to use 32-bit addresses to communicate with the system. You
do this by sending the PCI chip a 32-bit address through eax register and using port 0xCF8
as the port to send this data. Here's an example of the PCI register (sometimes called the
offset) address format. In the routine in listing 1.1, you see the following:

...
mov eax,80000064h
...

 The 80000064h is the address. The meanings of these bits are as follows:

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Binary Value 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
Hexadecimal
Value 0 0 6 4

Figure 1.9 PCI configuration address sample (low word)

13

Bit
Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Binary
Value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hexa-
decimal
Value

8 0 0 0

Figure 1.10 PCI configuration address sample (high word)

Bit Position Meaning

31

This is an enable bit. Setting this bit to one will grant a write or read
transaction through the PCI bus; otherwise, the transaction is not a valid
configuration space access and it is ignored. That's why you need an 8
(8h) in the leftmost hex digit.

24–30 Reserved bits
16–23 PCI bus number
11–15 PCI device number
8–10 PCI function number
2–7 Offset address (double word or 32-bit boundary)
0–1 Unused, since the addressing must be in the 32-bit boundary

Table 1.1 PCI register addressing explanation

 Now, examine the previous value that was sent. If you are curious, you'll find that
80000064h means communicating with the device in bus 0, device 0, function 0, and offset
64. This is the memory controller configuration register of the VIA 693A northbridge. In
most circumstances, the PCI device that occupies bus 0, device 0, function 0 is the host
bridge. However, you need to consult the chipset datasheet to verify this. The next routines
are easy to understand. If you still feel confused, I suggest that you learn a bit more of x86
assembly language. In general, the code does the following: it reads the offset data,
modifies it, and writes it back to the device.
 The configuration space of every PCI device contains device-specific registers
used to configure the device. Some registers within the 256-bytes configuration space
possibly are not implemented and simply return 0xFF on PCI configuration read cycles.
 As you know, the amount of RAM can vary among systems. How can PCI devices
handle this problem? How are they relocated to different addresses as needed? The answer
lays in the PCI configuration space registers. Recall from figures 1.7 and 1.8 that the
predefined configuration header contains a so-called BAR. These registers are responsible
for PCI devices addressing. A BAR contains the starting address within the memory or I/O
address space that will be used by the corresponding PCI device during its operation. The
BAR contents can be read from and written into, i.e., they are programmable using
software. It's the responsibility of the BIOS to initialize the BAR of every PCI device to the
right value during boot time. The value must be unique and must not collide with the

14

memory or I/O address that's used by another device or the RAM. Bit 0 in all BARs is read
only and is used to determine whether the BARs map to the memory or I/O address space.

Figure 1.11 Format of BAR that maps to memory space

Figure 1.12 Format of BAR that maps to I/O space

 Note that 64-bit PCI devices are implemented by using two consecutive BARs and
can only map to the memory address space. A single PCI device can implement several
BARs to be mapped to memory space while the remaining BAR is mapped to I/O space.
This shows that the presence of BAR enables any PCI device to be relocatable within the
system-wide memory and I/O address space.
 How can BIOS initialize the address space usage of a single PCI device, since
BAR only contains the lower limit of the address space that will be used by the device?
How does the BIOS know how much address space will be needed by a PCI device? BAR
contains programmable bits and bits hardwired to zero. The programmable bits are the
most significant bits, and the hardwired bits are the least significant bits. The
implementation note taken from PCI specification version 2.3 is as follows:

Implementation Note: Sizing a 32-bit Base Address Register
Example

Decode (I/O or memory) of a register is disabled via the command register
before sizing a Base Address register. Software saves the original value of

15

the Base Address register, writes 0FFFFFFFFh to the register, then reads it
back. Size calculation can be done from the 32-bit value read by first
clearing encoding information bits (bit 0 for I/O, bits 0–3 for memory),
inverting all 32 bits (logical NOT), then incrementing by 1. The resultant 32-
bit value is the memory–I/O range size decoded by the register. Note that
the upper 16 bits of the result are ignored if the Base Address register is for
I/O and bits 16–31 returned zero upon read. The original value in the Base
Address register is restored before reenabling decode in the command
register of the device.

64-bit (memory) Base Address registers can be handled the same, except
that the second 32-bit register is considered an extension of the first; i.e.,
bits 32–63. Software writes 0FFFFFFFFh to both registers, reads them back,
and combines the result into a 64-bit value. Size calculation is done on the
64-bit value.

 It's clear from the preceding implementation note that the BIOS can "interrogate"
the PCI device to know the address space consumption of a PCI device. Upon knowing this
information, BIOS can program the BAR to an unused address within the processor address
space. Then, with the consumption information for the address space, the BIOS can
program the next BAR to be placed in the next unused address space above the previous
BAR address. The latter BAR must be located at least in the address that's calculated with
the following formula:

next_BAR = previous_BAR + previous_BAR_address_space_consumption + 1

 However, it's valid to program the BAR above the address calculated with the
preceding formula. With these, the whole system address map will be functioning
flawlessly. This relocatable element is one of the key properties that the PCI device brings
to the table to eliminate the address space collision that once was the nightmare of ISA
devices.

1.4.3. Proprietary Interchipset Protocol Technology

 Motherboard chipset vendors have developed their own proprietary interchipset
protocol between the northbridge and the southbridge in these last few years, such as VIA
with V-Link, SiS with MuTIOL, and Intel with hub interface (HI). These protocols are only
an interim solution to the bandwidth problem between the peripherals that reside in the
PCI expansion slots, on-board PCI chips, and the main memory, i.e., system RAM. With the
presence of newer and faster bus protocols such as PCI Express and HyperTransport in the
market, these interim solutions are rapidly being phased out. However, reviewing them is
important to clean up issues that might plague you once you discover the problem of
understanding how it fits to the BIOS scene.
 These proprietary protocols are transparent from configuration and initialization
standpoints. They do not come up with something new. All are employing a PCI
configuration mechanism to configure PCI compliant devices connected to the northbridge

16

and southbridge. The interchipset link in most cases is viewed as a bus connecting the
northbridge and the southbridge. This “protocol transparency” is needed to minimize the
effect of the protocol on the investment needed to implement it. As an example, the Intel
865PE-ICH5 chipset mentioned this property clearly in the i865PE datasheet, as follows:

In some previous chipsets, the "MCH" and the "I/O Controller Hub (ICHx)"
were physically connected by PCI bus 0. From a configuration standpoint,
both components appeared to be on PCI bus 0, which was also the system's
primary PCI expansion bus. The MCH contained two PCI devices while the
ICHx was considered one PCI device with multiple functions.
In the 865PE/865P chipset platform the configuration structure is
significantly different. The MCH and the ICH5 are physically connected by
the hub interface, so, from a configuration standpoint, the hub interface is
logically PCI bus 0. As a result, all devices internal to the MCH and ICHx
appear to be on PCI bus 0. The system's primary PCI expansion bus is
physically attached to the ICH5 and, from a configuration perspective,
appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore,
it has a programmable PCI Bus number. Note that the primary PCI bus is
referred to as PCI_A in this document and is not PCI bus 0 from a
configuration standpoint. The AGP [accelerated graphics port] appears to
system software to be a real PCI bus behind PCI-to-PCI bridges resident as
devices on PCI bus 0.
The MCH contains four PCI devices within a single physical component.

 Further information regarding these protocols can be found in the corresponding
chipset datasheets. Perhaps, some chipset's datasheet does not mention this property clearly.
Nevertheless, by analogy, you can conclude that those chipsets must have adhered to the
same principle.

1.4.4. PCI Express Bus Protocol

 The PCI Express protocol supports the PCI configuration mechanism explained in
the previous subsection. Thus, in PCI Express–based systems, the PCI configuration
mechanism is still used. In most cases, to enable the new PCI Express–enhanced
configuration mechanism, the BIOS has to initialize some critical PCI Express registers by
using the PCI configuration mechanism before proceeding to use the PCI Express–
enhanced configuration mechanism. It's necessary because the new PCI Express–enhanced
configuration mechanism uses BARs that have to be initialized to a known address in the
system-wide address space before the new PCI Express–enhanced configuration cycle.
 PCI Express devices, including PCI Express chipsets, use the so-called root
complex register block (RCRB) for device configuration. The registers in the RCRB are
memory-mapped registers. Contrary to the PCI configuration mechanism that uses I/O
read/write transactions, the PCI Express–enhanced configuration mechanism uses memory
read/write transactions to access any register in the RCRB. However, the read/write
instructions must be carried out in a 32-bit boundary, i.e., must not cross the 32-bit natural
boundary in the memory address space. A root complex base address register (RCBAR) is

17

used to address the RCRB in the memory address space. The RCBAR is configured using
the PCI configuration mechanism. Thus, the algorithm used to configure any register in the
RCRB as follows:

1. Initialize the RCBAR in the PCI Express device to a known address in the
memory address space by using the PCI configuration mechanism.

2. Perform a memory read or write on 32-bit boundary to the memory-mapped
register by taking into account the RCBAR value; i.e., the address of the register in
the memory address space is equal to the RCBAR value plus the offset of the
register in the RCRB.

 Perhaps, even the preceding algorithm is still confusing. Thus, a sample code is
provided in listing 1.2.

Listing 1.2 PCI Express–Enhanced Configuration Access Sample Code

Init_HI_RTC_Regs_Mapping proc near
 mov eax, 8000F8F0h ; Enable the PCI configuration cycle to
 ; bus 0, device 31, function 0, i.e.,
 ; the LPC bridge in Intel ICH7
 mov dx, 0CF8h ; dx = PCI configuration address port
 out dx, eax
 add dx, 4 ; dx = PCI configuration data port
 mov eax, 0FED1C001h ; enable root complex configuration
 ; base address at memory space FED1_C000h
 out dx, eax
 mov di, offset ret_addr_1 ; Save return address to di register
 jmp enter_flat_real_mode
; --
ret_addr_1:
 mov esi, 0FED1F400h ; RTC configuration (ICH7 configuration
 ; register at memory space offset 3400h)
 mov eax, es:[esi]
 or eax, 4 ; Enable access to upper 128 bytes of RTC
 mov es:[esi], eax
 mov di, offset ret_addr_2 ; Save return address to di register
 jmp exit_flat_real_mode
; --
ret_addr_2:
 mov al, 0A1h
 out 72h, al
 out 0EBh, al
 in al, 73h
 out 0EBh, al ; Show the CMOS value in a diagnostic port
 mov bh, al
 retn
Init_HI_RTC_Regs_Mapping endp

18

 Listing 1.2 is a code snippet from a disassembled boot block part of the Foxconn
955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel 955X-ICH7
chipsets. As you can see, the register that controls the RTC register in the ICH77 is a
memory-mapped register and accessed by using a memory read or write instruction as per
the PCI Express–enhanced configuration mechanism. In the preceding code snippet, the
ICH7 RCRB base address is initialized to FED1_C000h. Note that the value of the last bit is
an enable bit and not used in the base address calculation. That's why it has to be set to one
to enable the root-complex configuration cycle. This technique is analogous to the PCI
configuration mechanism. The root-complex base address is located in the memory address
space of the system from a CPU perspective.
 One thing to note is that the PCI Express–enhanced configuration mechanism
described here is implementation dependent; i.e., it works in the Intel 955X-ICH7 chipset.
Future chipsets may implement it in a different fashion. Nevertheless, you can read the PCI
Express specification to overcome that. Furthermore, another kind of PCI Express–
enhanced configuration mechanism won't differ much from the current example. The
registers will be memory mapped, and there will be an RCBAR.

1.4.5. HyperTransport Bus Protocol

 In most cases, the HyperTransport configuration mechanism uses the PCI
configuration mechanism that you learned about in the previous section. Even though the
HyperTransport configuration mechanism is implemented as a memory-mapped transaction
under the hood, it's transparent to programmers; i.e., there are no major differences between
it and the PCI configuration mechanism. HyperTransport-specific configuration registers
are also located in within the 256-byte PCI configuration registers. However,
HyperTransport configuration registers are placed at higher indexes than those used for
mandatory PCI header, i.e., placed above the first 16 dwords in the PCI configuration space
of the corresponding device. These HyperTransport-specific configuration registers are
implemented as new capabilities, i.e., pointed to by the capabilities pointer8 in the device's
PCI configuration space. Please refer to figure 1.7 for the complete PCI configuration
register layout.

7 The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31,
function 0.
8 The capabilities pointer is located at offset 34h in the standard PCI configuration register layout.

19

	Preface
	Proposed Table of Contents.pdf
	Proposed Table of Contents

	Typographical Conventions.pdf
	Typographical Conventions

	BIOS_Ch01_JL.pdf
	Part I The Basics
	Chapter 1 PC BIOS Technology
	1.1. Motherboard BIOS
	1.2. Expansion ROM
	1.3. Other Firmware within the PC
	1.4. Bus Protocols Fundamentals
	1.4.1. System-wide Addressing
	1.4.2. PCI Bus Protocol
	1.4.3. Proprietary Interchipset Protocol Technology
	1.4.4. PCI Express Bus Protocol
	1.4.5. HyperTransport Bus Protocol

